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Introduction

Peripheral Blood Pressure (PBP) Signal

Peripheral Venous Pressure (PVP) Signal
Peripheral Arterial Pressure (PAP) Signal

The signal collection method is minimally invasive

It can be easily collected using regular catheters

Good representative of blood-circulation (cardiovascular) system
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Motivation

Dehydration or loss of intravascular blood volume is a common and
potentially life-threatening condition

Dehydration affects 30 million children annually and accounts for
400,000 pediatric emergency room visits in the United States.

Up to 10% of all US hospital admissions of children <5 years of age
are because of diarrhea and dehydration [WMB04]

Assessment of fluid volume status remains an elusive problem in
clinical medicine

There is no standardized measurement for intravascular volume in
adults or children

This necessitates the development of technologies that would
accurately assess the volume status of a patient to guide resuscitation
and treatment
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Dataset Description

Total 18 patients of hypertrophic pyloric stenosis
Electrolytes are used as a marker of dehydration

Dehydrated
Cl− < 100 mmol/L
HCO−

3 ≥ 30 mmol/L
Hydrated

Cl− ≥ 100 mmol/L
HCO−

3 < 30 mmol/L

Figure 1: PVP signal
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Data Acquisition System

Arterial Pressure Tubing

PIV Catheter

Data Acquisition

System

Pressure Transducer

Data Processing

Figure 2: Schematic diagram of the data acquisition system. Peripheral
intravenous (PIV) catheter is inserted into peripheral vein of a patient.
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Data Pre-processing

Splitting each patient’s data into non-overlapping windows of 10s

Dehydrated windows: 329

Hydrated windows: 343

FFT was performed over the time domain signals in each window

Frequency domain resolution of 1/10 = 0.1 Hz

Each window contains 200 frequency domain samples

between 0 and 19.9 Hz (inclusive)

No filtering used

Anomalous segments were removed manually
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Logistic Regression with Regularization

Logistic regression is a binary classifier

If i-th frequency domain window is Xi then

Xi = [1, f0, f0.1, · · · , f19.9]

And corresponding label Yi is defined as

Yi =

{
1, Dehydrated

0, Hydrated

This is a supervised classification problem
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Classification Results

Performance metrics

Sensitivity or TPR = TP
TP+FN

Specificity or TNR = TN
TN+FP

Window level classification

α Training Training Testing Testing Non-zero
Sensitivity(%) Specificity(%) Sensitivity(%) Specificity(%) Coefficients

0.0001 94.40 95.87 97.94 93.07 201

0.5 99.57 99.59 96.91 93.07 73

0.75 99.57 100 96.91 92.08 64

1 (LASSO) 99.57 99.17 97.95 93.07 43

Patient level classification

Majority voting on aggregate window decisions
Sensitivity = 100%, Specificity = 100%
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Motivation

PVP signals are highly susceptible to motion and noise artifacts

Results presented in the previous section are based on manual
removal of anomalous segments from PVP signals

Manual removal of the anomalies introduce human bias in the result

To remove this human bias we developed an unsupervised anomaly
detection algorithm
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PVP Signal Corruption
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Figure 3: PVP signal (top) without anomaly and (bottom) with anomaly.
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Unsupervised Anomaly Detection in PVP Signals

To detect anomalies, we propose a two step model

Step-1: PVP signals are represented and modeled using dynamic
linear models (DLM)

Step-2: The DLM-based Kalman filter prediction residuals are
modeled using a hidden Markov model (HMM)

DLMs are special case of state space models being

Gaussian
Linear and
Continuous
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Step-1: DLM Model

θ1

y1

θ2

y2

θt−1

yt−1

θt

yt

b bb

b bb

Figure 4: Dependence structure of dynamic linear model. Here, θi ’s are forming a
first-order Markov chain. Also, θi+1 and yi follow a Gaussian distribution
depending on θi under a linear relationship. {θi} and {yi} are continuous random
variables.
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Step-2: Modeling PVP Prediction Residuals with HMM

Residual xt = yt − ŷt|t−1 is associated with hidden state st ∈ {0, 1}
st = 0 indicates normal data, and st = 1 indicates anomalies.

s1

x1

s2

x2

st−1

xt−1

st

xt

b bb

b bb

Figure 5: Dependence structure of first-order hidden Markov model. Unlike Fig.
4, here {si} are discrete random variables and xi follows a Gaussian distribution
depending on si .
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Anomaly Detection: Example
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Figure 6: (Top) Anomalous PVP signal from Fig. 3; (middle) Prediction residual
of the Kalman filter; and (bottom) estimated hidden states (st = 0: normal
sample; st = 1: anomalous sample).
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Distribution of Residuals x(t)
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Figure 7: Empirical probability density function of residuals (xt) from patient 10.
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Normal Windows: Examples
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Figure 8: Example of normal windows inferred by the proposed model. Windows
have a periodic structure and the amplitude does not change abruptly.
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Anomalous Windows: Examples
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Figure 9: Example of anomalous windows inferred by the proposed model. In
theses windows, amplitude changes abruptly (10-15 mmHg higher than average)
indicating random motion and noise artifacts.
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Classification Results

Table 1: Testing Classification Results

Parameter Raw Data Manual Algorithm in [BSM+19] Proposed Algorithm

Sensitivity 45.96% 69.35% 63.31% 71.65%

Specificity 76.08% 77.42% 79.65% 81.21%

Precision 59.68% 73.83% 71.54% 74.60%

Accuracy 62.97% 71.07% 72.35% 77.05%

Windows used 100% 70.20% 84.05% 78.92%
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Motivation

There does not exist any modeling approach for PAP and PVP signals

A model can help us understand the interplay of different factors

To understand the heart rate variability (HRV) in the signals

Pig hearts have a lot of similarities with human hearts

This is why we used pigs in this study under anesthesia
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Pig Demographics

Table 2: Pig subjects used in this study

Subject Weight Age Controlled Blood-Weight
(kg) (weeks) Blood Loss (ml) Ratio (ml/kg)

Pig-1 70 16 1270 18.14

Pig-2 74 17 923 12.47

Pig-3 74 17 963 13.01

Pig-4 73 17 910 12.47
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Data Acquisition System

Millar SPR-3x0

Millar SPR-3x0

A
D
I
P
C
U
-2
0
0
0ADI PEC-10D

ADI PEC-10D
NI USB-6009

1/4” Phono to BNC

1/4” Phono to BNC

PAP

PVP

Figure 10: Schematic diagram of peripheral arterial pressure (PAP) and peripheral
venous pressure (PVP) signals being collected using Millar SPR-3x0 (solid-state)
catheters with National Instrument USB-6009 data acquisition system.

We model the voltage signal recorded at the data acquisition system
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Data Collection Workflow

Two different anesthesia were used in this study

Isoflurane (C3H2ClF5O) via inhalation
Propofol (C12H18O) injected into the veins

Both Isoflurane and Propofol are vasodilators

Vasodilators widen the blood vessels
Vasoconstrictors constrict the blood vessels

Increasing doses of vasodilator

Broadens the blood vessels
Similar to become hydrated from dehydration

Under dehydration, blood vessels constrict
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Data Collection Workflow

Table 3: Asterisks (*) denote the data used in this study.

Action Amount Abbreviation

Isoflurane *1.80 MAC-1
(%) *2.50 MAC-2

*2.80 MAC-3
2.00
1.50

Propofol *0.10 PRO-1
(mg/kg/min) *0.15 PRO-2

*0.20 PRO-3
0.05

Bleeding

Propofol 0.05

Isoflurane 1.50
2.00
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PAP and PVP Signals

Figure 11: Example of PAP (top) and PVP signals (bottom) from Pig-2 MAC-2.
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Heart Rate Variability

The heart rate does not remain constant over time

The variation in heart rate is called heart rate variability (HRV)

High HRV indicates a healthy nervous system

HRV can be contributed by multiple sources

The main cause of HRV is respiration

Heart rate increases and decreases with inhalation and exhalation

Respiratory-induced HRV is called respiratory sinus arrhythmia (RSA)

There are also other long-term sources of HRV such as

Autonomic nervous system imbalance
Heart diseases (like Arrhythmia)
Stress, poor sleep, unhealthy diet, and lack of exercise, etc
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Parametric Signal Modeling

The IPFM-based parametric model is based the following assumptions

Pulse onsets are initiated by modulating signal m(t)

Impulse is generated if integration of m(t) reaches a certain threshold

m(t) is a zero-mean signal and |m(t)| ≪ 1

Fourier transform F{m(t)} = M(ω) is bandlimited

Negligible power spectral density beyond 0.4-0.5 Hz [ML00; LS04]
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Parametric Signal Modeling

If tk as the pulse onset time of the k-th heartbeat. The following equation
relates tk with m(t) [ML00, Equation (1)]

T =

∫ tk+1

tk

[1 +m(t)]dt, (1)

or alternatively

k =

∫ tk

0

1 +m(t)

T
dt, (2)

where T is the mean heart rate interval in seconds, and 1
T is the mean

heart rate in Hertz and k ∈ Z+.
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Parametric Signal Modeling

Another signal is the heart timing signal θ(tk), which is defined as

θ(tk) = kT − tk =

∫ tk

0
m(τ)dτ. (3)

The knowledge of θ(t) can be used to estimate the signal m(t) as

m(t) =
dθ(t)

dt
. (4)
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Parametric Signal Modeling

If the heart rate signal is x(t) and heartbeat pulse is p(t) with support T .
Then

x(t) =
∑
k

p

(
T

tk+1 − tk
t

)
⊗ δ(t − tk), (5)

(5) can be simplified to

x(t) = p(t)⊗
∑
k

δ(t − tk). (6)

This approximation is only used to facilitate the modeling process. The
final modeled signal still follows (5).
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Parametric Signal Modeling

Once the pulse onset time instants {tk}k∈Z+ are known, a non-uniformly
spaced pulse train is defined as

s(t) ≜
∑
k

δ(t − tk), (7)

=
1 +m(t)

T

[
1 + 2

∞∑
n=1

cos

(
2nπ

T

(
t + θ(t)

))]
. (8)

Thus,

x(t) = p(t)⊗
∑
k

δ(t − tk) = p(t)⊗ s(t).
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Parametric Signal Modeling

Using the definitions, the observed PAP or PVP signal y(t) is modeled as

y(t) = τ(t) +
[
α+ r(t)

][
β + x(t)

]
. (9)

Here,

τ(t) is a slow-changing bias or drift with zero mean

r(t) is the zero-mean respiratory signal

x(t) = p(t)⊗ s(t) is the heart rate signal

α and β are the DC offsets of r(t) and x(t), respectively
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Model Reformulation

We apply reformulation will facilitate the model estimation process.

h(t) ≜ 2
∞∑
n=1

cos

(
2nπ

T

(
t + θ(t)

))
γ ≜

1

T

∫ T

0
p(t)dt,

q(t) ≜
1

T
p(t)⊗ [m(t)(1 + h(t))] .
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Model Reformulation

Combining

y(t) = τ(t) + y
LF
(t) + y

HF
(t), (10)

where

y
LF
(t) ≜

[
β + γ

][
α+ r(t)

]
, (11)

y
HF
(t) ≜ [α+ r(t)]x̃(t). (12)

Here, x̃(t) ≜ x(t)− γ.
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Model Fitting

Step-1: Band-limiting the input signal yr (t) to discard frequency
components beyond 15 Hz and this filtered signal is denoted as y(t).

Step-2: Apply a simple moving average filter with a window length of
30 s to extract the zero-mean bias τ(t) of the signal.

Step-3: Apply a low-pass filter with cutoff frequency f0 = 0.5 Hz to
the bias-corrected signal, ỹ(t) = y(t)− τ(t), to separate low and
high frequency component y

LF
(t) and y

HF
(t) respectively as

ỹ(t) = y(t)− τ̂(t) = y
LF
(t) + y

HF
(t).
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Model Fitting

Step-4: Find the upper and lower envelope eu(t) and el(t)
respectively of the signal y

HF
(t).

Step-5: Estimate α, β+γ, r(t) and x̃(t) using the following equations

α =
ēu − ēl

2
,

β + γ =
ȳ
LF

α
,

r(t) =
y
LF
(t)

β + γ
− α,

x̃(t) =
y
HF
(t)

α+ r(t)
.
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Model Fitting

Step-6: The signal x̃(t) is used to estimate {tk}k∈Z+ or s(t), p(t) and
T using onset detection algorithm. Pulse p(t) is used to estimate γ as

γ =

∫ T

0
p(t)dt.

Step-7: To incorporate pulse width modulation, using (5)

x̂(t) =
∑
k

p

(
T

tk+1 − tk
t

)
⊗ δ(t − tk).

Step-8: Synthesize ŷ(t) as follows

y
LF
(t) =

[
β + γ

][
α+ r(t)

]
y
HF
(t) =

[
α+ r(t)

][
x̂(t)− γ

]
ŷ(t) = τ(t) + y

LF
(t) + y

HF
(t)
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PVP Pulse Onset Detection

Pulse onset is detected using finding peaks of inverted signal −x̃(t)

Wait for a certain time after detecting a peak

Wait time depends on the fundamental frequency of heart rate signal

Wait time is in the range between 500-800 ms

Using “findpeaks()” function of Matlab
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PAP Pulse Onset Detection

Onset detection is performed on Slope sum function (SSF) [ZHMM03]

This SSF is basically the accumulation of non-zero slopes looking
back in time over a certain duration

The SSF signal has a sharp rise after the systolic onset

Once onset is found, pause for the next 500 ms
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Model Fitting: Step-1 & 2

Figure 12: Example of separating high-frequency noise and trend from recorded
signal yr (t) (Pig-2 MAC-2 PAP). Here, y(t) obtained after filtering yr (t) and
τ(t) is zero-mean trend of the signal y(t). Regarding τ(t), the whole signal
recording has a mean zero.
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Model Fitting: Step-3

Figure 13: Separating high-frequency component y
HF
(t) and low-frequency

component y
LF
(t) from ỹ(t) = y(t)− τ(t) signal (Pig-2 MAC-2 PAP). y

LF
(t) is a

linear transformation of respiratory signal r(t).
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Model Fitting: Step-4 & 5

Figure 14: Estimating envelope eu(t) and el(t) from y
HF
(t) signal (Pig-2 MAC-2

PAP). The model aims to flatten the envelope for x̂(t) signal.
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Model Fitting: PAP Signal

Figure 15: The PAP signal y(t) and corresponding synthesized signal ŷ(t) from
Pig-2 MAC-2 with ρ = 0.997.
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Model Fitting: PVP Signal

Figure 16: The PVP signal y(t) and corresponding synthesized signal ŷ(t) for
Pig-2 MAC-2 with ρ = 0.904.
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Dataset Description

The PAP and PVP signals are synchronized and have same duration

The sampling rate of all the signals is 1,000 samples/s

Table 4: PAP and PVP Signal duration (unit: minutes).

Subject MAC-1 MAC-2 MAC-3 PRO-1 PRO-2 PRO-3

Pig-1 21.08 13.79 2.42 20.58 16.94 9.89

Pig-2 18.74 6.45 22.30 20.01 12.50 13.31

Pig-3 20.84 20.37 19.89 33.43 19.43 30.38

Pig-4 20.12 19.97 10.00 20.39 21.34 20.39
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Model Fitting Performance

To evaluate the similarity between the experimental and model-synthesized
signals, Pearson’s correlation coefficient has been used.

ρ =

∑
i (y [i ]− ȳ)(ŷ [i ]− ¯̂y)√∑

i (y [i ]− ȳ)2
√∑

i (ŷ [i ]− ¯̂y)2
. (13)

Here, y [n] and ŷ [n] are discrete time samples of the signal y(t) and ŷ(t),
respectively. Also, ȳ and ¯̂y are the mean of the samples y [n] and ŷ [n].
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Model Fitting Performance

Table 5: Correlation coefficient ρ for the IPFM model in PAP signal.

Subject MAC-1 MAC-2 MAC-3 PRO-1 PRO-2 PRO-3

Pig-1 0.994 0.992 0.992 0.995 0.995 0.995

Pig-2 0.996 0.997 0.997 0.992 0.995 0.994

Pig-3 0.999 0.999 0.998 0.995 0.992 0.996

Pig-4 0.998 0.997 0.993 0.983 0.996 0.997
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Model Fitting Performance

Table 6: Correlation coefficient ρ for the IPFM model in PVP signal.

Subject MAC-1 MAC-2 MAC-3 PRO-1 PRO-2 PRO-3

Pig-1 0.930 0.927 0.784 0.922 0.912 0.905

Pig-2 0.921 0.904 0.913 0.952 0.954 0.941

Pig-3 0.952 0.959 0.952 0.947 0.957 0.940

Pig-4 0.902 0.884 0.828 0.905 0.871 0.879
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MAC and PRO Classification

Data

Training Data Testing Data

Synthesized Training Data Training Data Testing Data

Model-1

Result-1

Aggregate Windows 
from All Pigs 

Model-2

Result-2

Figure 17: This diagram explains the training and testing procedures. The testing
results are reported in Table 7.
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MAC and PRO Classification

Table 7: MAC and PRO classification results. (The results obtained by using the
experimental data are shown in parenthesis, and those obtained by using the
model-synthesized data are shown outside of the parenthesis.)

(a) MAC and PRO classification using PAP data.
- MAC Estimated PRO Estimated

MAC 93.33% (90.56%) 6.67% (9.44%)

PRO 8.33% (9.44%) 91.67% (90.56%)

Accuracy 92.50% (90.56%)

(b) MAC and PRO classification using PVP data.
- MAC Estimated PRO Estimated

MAC 85.56% (98.33%) 14.44% (1.67%)

PRO 14.72% (9.44%) 85.28% (90.56%)

Accuracy 85.42% (94.44%)

M. A. Hayat (UArk) Understanding PBP Signals June 30, 2023 54 / 71



Proposed Signal Model on CHARIS Dataset

Figure 18: Comparison of arterial pressure signal y(t) and corresponding model fit
ŷ(t) from subject 10 of the CHARIS [KKK+16] dataset. This 15-minute data fit
has ρ = 0.990.
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Proposed Signal Model on CHARIS Dataset

Table 8: Correlation coefficient ρ for the IPFM model in CHARIS data with
human subjects.

Subject ρ Subject ρ Subject ρ

1 0.959 6 0.989 11 0.978

2 0.960 7 0.992 12 0.974

3 0.988 8 0.990 13 0.989

4 0.964 9 0.988 - -

5 0.983 10 0.990 - -

M. A. Hayat (UArk) Understanding PBP Signals June 30, 2023 56 / 71



Dicrotic Notch

Figure 19: Dicrotic notch in a PAP pulse p(t) in Pig-2 MAC-2. This notch marks
the end of systole and the beginning of diastole.
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Unit Pulse Shapes

Figure 20: Pulse shapes in PAP signals at the different anesthetic stages. The red
pulses are the aggregate averages of gray pulses.
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Unit Pulse Shapes

Figure 21: Pulse shapes in PVP signals at the different anesthetic stages. The red
pulses are the aggregate averages of gray pulses.
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Variation in Pulse Duration

Figure 22: Change in pulse duration (T ) of ŷ(t) under different levels of
Isoflurane and Propofol based on PAP, and PVP signals.
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Correlation Between Respiratory and Modulating Signals

Figure 23: Correlation coefficients of different states between m(t) and r(t)
signals. Panels (a) and (b) are based on PAP and PVP signals respectively. The
gray horizontal lines in (a) represent ρ = −0.35 and ρ = −0.75 respectively.
Similarly, in (b) the gray lines represent ρ = 0.25 and ρ = −0.25 respectively.
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Future Works

Apart from PVP signals, a careful design of experiment should also
include ECG, PPG, breathing rate and other related signals

Side-by-side comparison of PVP and PPG in predicting dehydration or
other similar open-ended problems

The ultimate goal of any long-term future work should include
creation of a massive dataset from hydrated and dehydrated subjects
under different circumstances

In ideal scenario, the dataset should be open and available

M. A. Hayat (UArk) Understanding PBP Signals June 30, 2023 63 / 71



Outline

1 Introduction

2 Predicting Dehydration in the Pediatric Population using PVP Signals

3 Unsupervised Anomaly Detection in PVP Signals

4 Modeling of PVP and PAP Signals Using IFPM

5 Future Works

6 Summary of Contributions

7 Q&A

M. A. Hayat (UArk) Understanding PBP Signals June 30, 2023 64 / 71



List of Publications (First Author Journals)

M. A. Hayat, Jingxian Wu, et al. “Unsupervised Bayesian learning
for rice panicle segmentation with UAV images.” Plant methods, 16.1
(2020): 1-13.

✓ M. A. Hayat, Jingxian Wu, et al. “Unsupervised anomaly detection
in peripheral venous pressure signals with hidden Markov models.”
Biomedical Signal Processing and Control, 62 (2020): 102126.

M. A. Hayat, George Stein, et al. ”Self-supervised representation
learning for astronomical images.” The Astrophysical Journal Letters,
911.2 (2021): L33.

✓ M. A. Hayat, Jingxian Wu, et al. “Modeling Peripheral Arterial and
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Biomedical Signal Processing & Control. [Under Review]
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List of Publications

✓ P. C. Bonasso, K. W. Sexton, M. A. Hayat, et al. “Venous
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of Surgical Research, 238 (2019): 232-239.

P. C. Bonasso, K. W. Sexton, S. C. Mehl, M. S. Golinko, M. A.
Hayat, et al. “Lessons learned measuring peripheral venous pressure
waveforms in an anesthetized pediatric population.” Biomedical
Physics & Engineering Express 5.3 (2019): 035020.

A. Z. Al-Alawi, K. R. Henry, L. D. Crimmins, P. C. Bonasso, M. A.
Hayat, et al. “Anesthetics affect peripheral venous pressure
waveforms and the cross-talk with arterial pressure.” Journal of
clinical monitoring and computing 36.1 (2022): 147-159.

L. D. Crimmins-Pierce, G. P. Bonvillain, K. R. Henry, M. A. Hayat,
et al. “Critical Information from High Fidelity Arterial and Venous
Pressure Waveforms During Anesthesia and Hemorrhage.”
Cardiovascular Engineering and Technology (2022): 1-13.
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Research @UArk

Developed a supervised Gaussian mixture model based rice panicle
segmentation algorithm using Markov chain Monte Carlo method

Unlike deep learning models, it can work on smaller dataset and
images with different sizes

Figure 24: Panicle segmentation
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Research @Industry

Nokia Bell Labs (Summer 2019)

OCT image processing using deep learning

Lawrence Berkeley National Lab (Summer 2020)

Self-supervised learning of cosmological image
1 Journal article
1 NeurIPS workshop paper
Talk, website and media coverage [link]

Amazon Web Services - AWS (Summer 2021)

Amazon Lookout for Metrics, an anomaly detection service
Using forecasting algorithm on anomaly detection
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Q&A

Thank you for your patience!

Questions?

Feedback/Suggestions?

M. A. Hayat (UArk) Understanding PBP Signals June 30, 2023 71 / 71


	Introduction
	Predicting Dehydration in the Pediatric Population using PVP Signals
	Unsupervised Anomaly Detection in PVP Signals
	Modeling of PVP and PAP Signals Using IFPM
	Future Works
	Summary of Contributions
	References
	Q&A

