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Motivation

Dehydration or loss of intravascular blood volume is a common and
potentially life-threatening condition

Dehydration affects 30 million children annually and accounts for
400,000 pediatric emergency room visits in the United States.

Up to 10% of all US hospital admissions of children <5 years of age
are because of diarrhea and dehydration [WMB04]

Assessment of fluid volume status remains an elusive problem in
clinical medicine

There is no standardized measurement for intravascular volume in
adults or children

This necessitates the development of technologies that would
accurately assess the volume status of a patient to guide resuscitation
and treatment
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Peripheral Venous Pressure Signal

Peripheral Venous Pressure (PVP) Signal

Collected from peripheral veins

The signal collection method is minimally invasive

It can be easily collected using ubiquitously regular catheters

The PVP signal is a good representative of blood-circulation
(cardiovascular) system

PVP is strongly correlated with other vital invasive signals like Central
venous pressure (CVP) and Jugular vein pressure (JVP) [HEY+06]
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Data Acquisition System

Arterial Pressure Tubing

PIV Catheter

Data Acquisition

System

Pressure Transducer

Data Processing

Figure 1: Schematic diagram of the data acquisition system. Peripheral
intravenous (PIV) catheter is inserted into peripheral vein of a patient. Source:
[HWB+20]
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Dataset Description

Total 18 patients of hypertrophic pyloric stenosis
Electrolytes are used as a marker of resuscitation

Hypovolemic/Dehydrated
Cl− < 100 mmol/L
HCO−

3 ≥ 30 mmol/L
Resuscitated/Euvolemic/Hydrated

Cl− ≥ 100 mmol/L
HCO−

3 < 30 mmol/L

Figure 2: PVP signal
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Data Pre-processing

Splitting each patient’s data into non-overlapping windows of 10s

Hypovolemic windows: 329

Resuscitated windows: 343

FFT was performed over the time domain signals in each window

Frequency domain resolution of 1/10 = 0.1 Hz

Each window contains 200 frequency domain samples between 0 and
19.9 Hz (inclusive)

No filtering used

Anomalous segments were removed manually
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Logistic Regression with Regularization

Logistic regression is a binary classifier

If i-th frequency domain window is Xi then

Xi = [1, f0, f0.1, · · · , f19.9]

And corresponding label Yi is defined as

Yi =

{
1, Hypovolemic/Dehydrated

0, Resuscitated/Euvolemic/Hydrated

This is a supervised classification problem
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Logistic Regression with Regularization

The aim is to design β during training such that

P(Yi = 1) =
1

1 + e−βTXi

P(Yi = 0) =
e−β

TXi

1 + e−βTXi

Here, β is a 201-dimension regression coefficient vector

Once β is trained and validated, it can be used on testing dataset
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Logistic Regression with Regularization

β is estimated by minimizing the following loss function ℓ(β)

ℓ(β) =
n∑

i=1

[(1− yi )β
TXi + log(1 + e−β

TXi )] + λPα(β)

Pα(β) =
1− α

2
∥β∥22 + α∥β∥1

Here, n is the total number of training windows

∥β∥1 and ∥β∥2 are the L1 and L2 norms of β respectively

Two special cases of Elastic-net α ∈ [0, 1] are

α =

{
1, LASSO

0, Ridge

LASSO is Least Absolute Shrinkage & Selection Operator

M. A. Hayat (UArk) Ph.D. Candidacy Exam October 10, 2022 10 / 59



Logistic Regression with Regularization

70% windows from each category were chosen as the training and
validation data

232 windows with Y = 1 and 242 windows with Y = 0 were used for
training and validation

The remaining 30% were used for testing

To tune λ, 5-fold cross-validation (CV) is applied training data

Within each CV, 80% of the training data have been used for training
purpose and 20% (validation) have been used to find the deviance for
selecting proper λ

λ = 0.0055 gives the minimum deviance during CV with LASSO

The optimum λ forced 158 of the 201 coefficients of β to be zero
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Classification Results

Figure 3: Cross-validation for optimizing the tuning parameter λ. The minimum
deviance is obtained at λ = 0.0055.
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Classification Results

Performance metrics

Sensitivity/TPR = TP
TP+FN

Specificity/TNR = TN
TN+FP

Window level classification

α Training Training Testing Testing Non-zero
Sensitivity(%) Specificity(%) Sensitivity(%) Specificity(%) Coefficients

0.0001 94.40 95.87 97.94 93.07 201

0.5 99.57 99.59 96.91 93.07 73

0.75 99.57 100 96.91 92.08 64

1 (LASSO) 99.57 99.17 97.95 93.07 43

Patient level classification

Majority voting on aggregate window decisions
Sensitivity(%) = 100%, Specificity(%) = 100%

M. A. Hayat (UArk) Ph.D. Candidacy Exam October 10, 2022 13 / 59



Kolmogorov–Smirnov Two-sample Test

Kolmogorov–Smirnov (KS) two-sample test is a non-parametric test

It is used to identify if two different samples are coming from the
same distribution or not

In frequency domain data, two-sample test has been performed over
the frequency range from 1.5 Hz to 4.5 Hz.

H0: Samples follow same distribution at a frequency f Hz
H1: Samples follow different distribution at f Hz
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Kolmogorov–Smirnov Two-sample Test

Figure 4: p-value of the Kolmogorov-Smirnov two-sample test over frequency
range 1.5 to 4.5 Hz.
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Kolmogorov–Smirnov Two-sample Test

Figure 5: The empirical cumulative distribution functions (CDFs) of data from
hypovolemic or resuscitated patients at 2.4 Hz.
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Amplitude: Hydrated

Figure 6: Box plot of peripheral venous pressure (PVP) signal amplitude at 2.4 Hz
for resuscitated patients before and after bolus. The signal amplitude does not
change significantly. The outliers are plotted using “+” symbol in the figure.
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Amplitude: Dehydrated

Figure 7: Box plot of peripheral venous pressure (PVP) signal amplitude at 2.4 Hz
for hypovolemic patients before and after bolus. The signal amplitude changes
significantly due to bolus. The outliers are plotted using “+” symbol in the figure.
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Artery-Vein Crosstalk

Figure 8: The power spectral density (PSD) of peripheral venous pressure (PVP)
for the hydrated patient (left) identifies a peak at frequencies around the heart
rate (red dotted line). In this example, the peak is shown at approximately 1.8 Hz
= 108 bpm. In the same patient during dehydration (right), this phenomenon
does not exist.
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Unsupervised Anomaly Detection in PVP Signals

PVP signals are highly susceptible to motion and noise artifacts

To detect anomalies, we propose a two step model

Step-1: PVP signals are represented and modeled by using dynamic
linear models (DLM)

Step-2: The DLM-based Kalman filter prediction residuals are
modeled by using a hidden Markov model (HMM)

DLMs are special case of state space models being Gaussian, linear
and continuous
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PVP Signal Corruption
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Figure 9: Exemplary PVP signal (a) without anomaly and (b) with anomaly.
Image: [HWB+20]
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DLM Model

Define, PVP signal samples yt , ∀ t = 1, 2, · · · ,T
To simplify notation, y1:T = [y1, y2, · · · , yT ]
We assume, yt is associated with a time-varying (latent) state, θt by

yt = Fθt + vt ;

θt = Gθt−1 + wt .

Here, F and G are constants for a given patient

vt ∼ N (0, σ2
v ), wt ∼ N (0, σ2

w ) and vt ⊥ wt .
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DLM Model

θ1

y1

θ2

y2

θt−1

yt−1

θt

yt

b bb

b bb

Figure 10: Dependence structure of dynamic linear model. Here, θi ’s are forming
a first-order Markov chain. Also, θi+1 and yi follow a Gaussian distribution
depending on θi under a linear relationship. {θi} and {yi} are continuous random
variables. Image: [HWB+20]
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Kalman Filter

Given all previous observations y1:t−1, Kalman filter is used to
estimate yt and the state variable θt

θ̂t|τ as the estimation of θt by using y1:τ with τ = t − 1 or t

ŷt|τ as the estimation of yt by using y1:τ with τ = t − 1

We define: Qt|τ = E[|ŷt|τ − yt |2] and Rt|τ = E[|θ̂t|τ − θt|τ |2]
The values of θ̂t|τ , Rt|τ , ŷt|τ , and Qt|τ can be iteratively updated by
using the Kalman filter, and details are in the following slide
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DLM Model Parameters

The DLM is represented by parameter set, {F ,G , σ2
v , σ

2
w θ̂0|0,R0|0}

The parameters are estimated by using the maximum likelihood
estimation algorithm L-BFGS-B [PA10]

Once the parameters are estimated, Kalman filter can then be applied
to track and estimate the dynamic evolution of the data in the time
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Kalman Filter Algorithm

Algorithm 1 Kalman Filter

1: Input: Discrete time dataset y1:T ;
2: Estimate {F ,G , σ2

v , σ
2
w θ̂0|0,R0|0} using L-BFGS-B algorithm on y1:T ; initialize t = 0.

3: do
4: t ← t + 1;
5: Prediction of θt :

θ̂t|t−1 = G θ̂t−1|t−1

Rt|t−1 = G2Rt−1|t−1 + σ2
w

6: Prediction of yt :
ŷt|t−1 = F θ̂t|t−1

Qt|t−1 = F 2Rt|t−1 + σ2
v

7: Calculate prediction residual: xt = yt − ŷt|t−1;
8: Update estimation of θt :

θ̂t|t = θ̂t|t−1 + FRt|t−1Q
−1
t|t−1

xt

Rt|t = Rt|t−1 − F 2R2
t|t−1Q

−1
t|t−1

9: while t ≤ T
10: Output: Prediction residual x1:T .
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Modeling PVP Prediction Residuals with HMM

Residual xt is associated with a binary hidden state st ∈ {0, 1}, where
st = 0 indicates normal data, and st = 1 indicates anomalies.

s1

x1

s2

x2

st−1

xt−1

st

xt

b bb

b bb

Figure 11: Dependence structure of first-order hidden Markov model. Unlike fig.
10, here {si} are discrete random variables and xi follows a Gaussian distribution
depending on si . Image: [HWB+20]
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HMM Formulation

x1:T = [x1, x2, · · · , xT ]
aij = Pr(st+1 = j |st = i), for i , j ∈ {0, 1} and A = [aij ]

πk = Pr(s1 = k) for k ∈ {0, 1} and π = [π0, π1]
T

xt |(st = k) ∼ N (µk , σ
2
k), for k ∈ {0, 1} and B = {µ0, µ1, σ

2
0, σ

2
1}

It is assumed that σ2
1 > σ2

0

Time-homogeneous parameter set λ = {A,π,B}
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Baum-Welch Algorithm

Define the posterior probability of the hidden state variable as

γt(i) = Pr(st = i |x1:T ,λ)

Once the HMM parameter set λ is known, the anomaly detection
algorithm can be formulated as

ŝt = argmax
i∈{0,1}

γt(i).

Baum-Welch algorithm (an expectation-maximization algorithm) can learn
parameter set, λ, by maximizing the log-likelihood function

ℓ = log p(x1:T |λ)
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Baum-Welch Algorithm

Baum-Welch algorithm involves the iterative calculation of a forward
probability, αt(i), and a backward probability, βt(i), defined as

αt(i) =

{
πip(x1|s1 = i ,λ), t = 1,
Pr(x1:t , st = i |λ), 2 ≤ t ≤ T

βt(i) =

{
p(x(t+1):T |st = i ,λ), 1 ≤ t ≤ T − 1,
1, t = T .

The forward and backward probabilities can be iteratively updated as

αt(i) =
∑

j∈{0,1}

αt−1(j)ajip(xt |st = i ,λ), 2 ≤ t ≤ T

βt(i) =
∑

j∈{0,1}

aijp(xt+1|st+1 = j ,λ)βt+1(j),

for 1 ≤ t ≤ T − 1.
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Baum-Welch Implementation Challenges

αt(i) and βt(i) get small (mathematical underflow) for increasing T

The ‘log-sum-exponent’ trick gives approximate solution with
increasing time complexity

We adopt the variable scaling approach as proposed in [Rab89] to
achieve mathematically accurate and robust estimation

[Rab89] is ambiguous while defining the scaled probabilities

We try to give the physical meaning and better understanding of the
scaled variables
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Modified Baum-Welch Algorithm

Define a modified forward probability variable, α̃t(i), as

α̃t(i) =

{
Pr(x1, s1 = i |λ), t = 1
Pr(xt , st = i |x1:t−1,λ), t > 1

(1)

The variable α̃t(i) can be interpreted as a scaled version of αt(i) as

α̃t(i) = Ct−1αt(i) (2)

where the scaling variable Ct is defined as follows

C−1t =

{
1, t = 0,
p(x1:t |λ) = αt(0) + αt(1), t ≥ 1
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Lemma 1

Lemma

The scaled forward probability variable, α̃t(i), can be calculated in an
iterative manner as

α̃t(i) = ct−1
∑

j∈{0,1}

α̃t−1(j) · aji · p(xt |st = i , λ),

for 2 ≤ t ≤ T and α̃1(i) = α1(i), and ct is defined as

c−1t = p(xt |x1:t−1,λ) = α̃t(0) + α̃t(1)
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Lemma 2

Lemma

The scaled backward probability variable, β̃t(i), can be calculated in an
iterative manner as

β̃t(i) = ct+1

∑
j∈{0,1}

aijp(xt+1|st+1 = j , λ)β̃t+1(j) (3)

where 1 ≤ t ≤ T − 1 and β̃T (i) = βT (i) = 1.
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Likelihood Function

Based on the definitions of Ct , Dt , and ct , we have the following
relationship among them

Ct = c1c2 · · · ct =
t∏

i=1

ci = ctCt−1

Dt = ctct+1 · · · cT =
T∏
i=t

ci = ctDt+1

The likelihood function can then be calculated as

p(x1:T |λ) = C−1T =
ct

CtDt
= C−1t D−1t+1 = c−1t C−1t−1D

−1
t+1
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Posterior Probability

The posterior probability γt(i) is redefined as

γt(i) =
p(x1:T , st = i |λ)

p(x1:T |λ)

=
Pr(x1:t , st = i |λ) · p(x(t+1):T |st = i ,λ)

p(x1:T |λ)
= αt(i)βt(i)Ct−1Dt+1ct

= ct α̃t(i)β̃t(i)

The relationship γt(0) + γt(1) = 1 can be used for sanity check

In HMM, x1:t and xt+1:T are conditionally independent given st
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Baum-Welch Algorithm

Implementation of the Baum-Welch algorithm requires the definition of
the following probability

ξt(i , j) = Pr(st = i , st+1 = j |x1:T ,λ)

=
αt(i)βt+1(j)aijp(xt+1|st+1 = j)

p(x1:T |λ)
= ctaij α̃t(i)β̃t(j)p(xt+1|st+1 = j)
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Baum-Welch Algorithm

Baum-Welch algorithm contains an expectation step (E-step) and a
maximization step (M-step)

In the E-step, the probabilities, α̃t(i), β̃t(i), γt(i), and ξt(i , j), are
calculated with the parameter set λ from the previous iteration

In the M-step, the parameter set λ are updated by using the
probabilities γt(i) and ξt(i , j) obtained in the E step
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Baum-Welch Algorithm

The parameter estimations [ZML16] performed at the M-step in each
iteration are

πi = γ1(i);

µi =

∑T
t=1 γt(i)xt∑T
t=1 γt(i)

σ2
i =

∑T
t=1 γt(i)(xt − µi )

2∑T
t=1 γt(i)

aij =

∑T−1
t=1 ξt(i , j)∑T−1
t=1 γt(i)

for i , j ∈ {0, 1}.

It is important to note that the estimated parameters are calculated
using α̃t(i) and β̃t(i) instead of using αt and βt
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Baum-Welch Initialization

In the k-th iteration, we can update the log-likelihood function as

ℓ(k) = − logCT .

Parameters are initialized as

π0 = π1 = 0.5

A = 1
2 I2

µ0 = 0

µ1 = 0

σ0 = s

σ1 =
1

2
max(|x1:T |)

x̄ =
∑T

i=1 xi and s2 = 1
T−1

∑T
i=1(xi − x̄)2
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Baum-Welch Algorithm

Algorithm 2 Baum-Welch Algorithm

1: Input: Discrete time dataset x1:T ;
2: Initialize λ, set t = 0 and ℓ(0) = −∞;
3: do
4: t ← t + 1;
5: Calculate α̃t(i) and ct ;
6: Calculate β̃t(i);
7: Calculate γt(i) and ξt(i , j);
8: Update πi , µi , σ

2
i ,A, here σ2

1 > σ2
0;

9: Calculate ℓ(k);
10: while ℓ(t)− ℓ(t − 1) > ϵ
11: Output: λ, γt(i), for t = 1, · · · ,T and i ∈ {0, 1}.
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Window-based Anomaly Removal

Given γt(i), hidden state ŝt of each sample can be estimated

γt(i) = Pr(st = i |x1:T ,λ)

Samples with estimated hidden state ŝt = 1 are labeled as anomalies

PVP signals from each subjects are first divided into non-overlapping
windows with w samples per window

If the percent of corresponding anomalous residuals within a window
exceeds a certain threshold ζ (e.g. ζ = 15%), then all samples within
this window are discarded.
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Window-based Anomaly Removal

Algorithm 3 Window-based Anomaly Removal

1: Input: PVP signal y1:T , window size w , threshold ζ;
2: Infer ŝ1:T using Algorithms 1 and 2.
3: for n = 1 to ⌊T/w⌋ do
4: Calculate the percentage of anomaly samples in the n-th window

τn =
1

w

w∑
i=1

ŝ(n−1)w+i

5: If τn ≥ ζ, discard the n-th window;
6: end for
7: Output: Normal windows.
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Anomaly Detection: Example

315 320 325 330 335 340 345 350 355 360 365

Time (s)

0

10

20

30

P
V

P
 (

m
m

H
g

)

315 320 325 330 335 340 345 350 355 360 365

Time (s)

-0.5

0

0.5
R

e
s
id

u
a

ls
 (

x
t)

315 320 325 330 335 340 345 350 355 360 365

Time (s)

0

0.5

1

S
ta

te
s
 (

s
t)

Figure 12: (Top) Exemplary PVP signal from Fig. 9; (middle) Prediction residual
of the Kalman filter; and (bottom) estimated hidden states (st = 0: normal
sample; st = 1: anomalous sample. Image: [HWB+20]
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Distribution of Residuals x(t)
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Figure 13: Empirical probability density function of prediction residuals (xt) of
patient 10. Image: [HWB+20]
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Normal Windows: Examples
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Figure 14: Example of normal windows inferred by the proposed model. Windows
have a periodic structure and the amplitude does not change abruptly. Image:
[HWB+20]
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Anomalous Windows: Examples
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Figure 15: Example of anomalous windows inferred by the proposed model. In
theses windows, amplitude changes abruptly (10-15 mmHg higher than average)
indicating random MNAs. Image: [HWB+20]
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Anomaly Detection Results

Table 1: Number of normal and anomalous windows for 24 patients (ζ = 15%).

Patient Status Normal Anomaly Anomaly (%)

5 Hypo. 55 9 14.06

6 Hypo. 65 2 02.99

7 Hypo. 14 34 70.83

9 Euvo. 55 1 01.79

10 Euvo. 42 24 36.36

12 Euvo. 35 23 39.66

18 Hypo. 27 17 38.64

20 Euvo. 36 5 12.20

22 Hypo. 42 5 10.64

23 Euvo. 26 5 16.13

24 Euvo. 26 7 21.21

25 Hypo. 49 9 15.52

26 Hypo. 45 4 08.16

27 Euvo. 22 11 33.33

28 Euvo. 45 2 04.26

29 Hypo. 43 3 06.52

30 Euvo. 37 9 19.57

31 Euvo. 52 9 14.75

32 Hypo. 38 9 19.15

33 Euvo. 30 14 31.82

34 Hypo. 30 15 23.33

35 Euvo. 50 7 12.28

37 Euvo. 40 13 24.53

39 Euvo. 40 9 18.37
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Patient Characteristics

Table 2: Characteristics of Euvolemic (Hydrated) and Hypovolemic (Dehydrated)
patients

Euvo. Hypo.

Patients 14 10

Average weight (kg) 4.17 3.89

Minimum weight (kg) 2.76 2.72

Maximum weight (kg) 5.82 4.72

Std. deviation (kg) 0.78 0.70

Mean age (days) 38.1 40.1

M. A. Hayat (UArk) Ph.D. Candidacy Exam October 10, 2022 49 / 59



Windows Used for Classification

Table 3: Windows in Euvolemic (Hydrated) and Hypovolemic (Dehydrated)
patients

Training Set Testing Set

Euvo. Hypo. Total Euvo. Hypo. Total

Raw Data 466 354 820 209 161 370

Manual 333 273 606 155 124 279

Algorithm in [BSM+19] 372 306 678 172 139 311

Proposed Algorithm 371 281 652 165 127 292
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Classification Results

Table 4: Testing Classification Results

Parameter Raw Data Manual Algorithm in [BSM+19] Proposed Algorithm

True Positive Rate 45.96% 69.35% 63.31% 71.65%

True Negative Rate 76.08% 77.42% 79.65% 81.21%

Precision 59.68% 73.83% 71.54% 74.60%

F1 Score 52.00% 75.41% 67.18% 73.09%

Accuracy 62.97% 71.07% 72.35% 77.05%

Windows used 100% 70.20% 84.05% 78.92%

M. A. Hayat (UArk) Ph.D. Candidacy Exam October 10, 2022 51 / 59



Future Works

Based on a dataset collected during Summer 2020

Multiple signals were collected from four pigs
We have developed an analytical model (paper under review)
Try to distinguish different anesthetic levels using the dataset

Using public dataset to understand similar scenarios

Exploring other non-invasive signals like PPG
Apply deep learning and methods already developed where possible
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Research @UArk

Developed a supervised Gaussian mixture model based rice panicle
segmentation algorithm using Markov chain Monte Carlo method

Unlike deep learning models, it can work on smaller dataset and
images with different sizes

Figure 16: Panicle segmentation
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Research @Industry

Nokia Bell Labs (Summer 2019)

OCT image processing using deep learning

Lawrence Berkeley National Lab (Summer 2020)

Self-supervised learning of cosmological image
1 Journal article
1 NeurIPS workshop paper
Website and media coverage

Amazon Web Services - AWS (Summer 2021)

Amazon Lookout for Metrics, an anomaly detection service
Applying deep learning based forecasting algorithm on anomaly
detection
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Research @Industry

Figure 17: Media coverage (source)
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Thank you for your patience!

Questions?

Feedback/Suggestions?
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