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Sky Surveys

arxiv: 2012.13083

Sky surveys are massive data generators, 

imaging ~10 billion galaxies in the near future

Galaxies from the Sloan Digital Sky Survey (SDSS)

Organize  
&  

data discovery

Find rare objects  
&  

detect anomalies

Classification tasks 
e.g.  

Galaxy type

Regression tasks 
e.g.  

distance/redshift

http://arxiv.org/abs/2012.13083
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Supervised learning

arxiv: 2012.13083

Target a specific task and collect labels

Classification tasks 
e.g.  

galaxy type

Organize  
&  

data discovery

Find rare objects  
&  

detect anomalies

Regression tasks 
e.g.  

distance/redshift

Data

Labels

CNN

1. Design architecture 
2. Split data into train/validate/test 
3. Train model weights through back propagation 
4. Deploy model, assuming unlabelled data comes 

from the same distribution

http://arxiv.org/abs/2012.13083


Self-supervised representation learning for astronomical images 3

Supervised learning
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Target a specific task and collect labels

Classification tasks 
e.g.  

galaxy type

Organize  
&  

data discovery

Find rare objects  
&  

detect anomalies

Regression tasks 
e.g.  

distance/redshift

Data

Labels

CNN

1. Design architecture 
2. Split data into train/validate/test 
3. Train model weights through back propagation 
4. Deploy model, assuming unlabelled data comes 

from the same distribution

Unsupervised learning
Clustering, dimensionality reduction and feature selection, etc..

http://arxiv.org/abs/2012.13083
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Self-supervised representation learning

arxiv: 2012.13083

Without any labels, learn low-dimensional representations of data which preserve semantic information 
Then, use representations for “downstream tasks” (regression, classification, etc…)

http://arxiv.org/abs/2012.13083
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Self-supervised representation learning

arxiv: 2012.13083

Without any labels, learn low-dimensional representations of data which preserve semantic information 
Then, use representations for “downstream tasks” (regression, classification, etc…)

Generative 
• Autoencoder, VAE 
• Flow-based 
• …

Self-supervised Learning: Generative or Contrastive

http://arxiv.org/abs/2012.13083
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Self-supervised representation learning

arxiv: 2012.13083

Without any labels, learn low-dimensional representations of data which preserve semantic information 
Then, use representations for “downstream tasks” (regression, classification, etc…)

Generative 
• Autoencoder, VAE 
• Flow-based 
• …

Self-supervised Learning: Generative or Contrastive

Train using MSE loss or similar
nothing to enforce that small variations in the 
input image result in similar representations 

Familiar example: Autoencoder

http://arxiv.org/abs/2012.13083
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1. Self-supervised contrastive representation learning 
Learn representations in an unsupervised manner

     2. Downstream tasks 
Use representations for a variety of applications

• Anomaly detection

• Strong lens finding

• Low brightness gals.

• etc…

Rep
re

se
nt

at
ions

Redshift

prediction

Similarity

 Search

Query 
Image

Similar 
Images

Contrastive Loss

Representations

Galaxy 

Morphologies

Images

Views 
Randomly augment: 

  rotate, add noise, …

zq zk+

zk�

zk�

arxiv: 2012.13083

Contrastive learning

Task-agnostic augmentations for galaxy surveys: 

• Rotation 
• Jitter 
• Gaussian noise 
• Galactic extinction 
• Point spread function (blur) 
• … 

For other data/applications, choose your own 
using domain knowledge

Learn representations that are invariant to desired augmentations

http://arxiv.org/abs/2012.13083
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Contrastive learning

Task-agnostic augmentations for galaxy surveys: 

• Rotation 
• Jitter 
• Gaussian noise 
• Galactic extinction 
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For other data/applications, choose your own 
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Contrastive learning
Learn representations that are invariant to desired augmentations

http://arxiv.org/abs/2012.13083
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Dataset

SDSS 5 band images (ugriz)
1.3 million images total  

500k have redshift labels from spectroscopic followup 
180k have crowd sourced morphology classifications  

1. Train Resnet-50 encoder through self-supervised 
contrastive representation learning on all 1.3M 

images using MoCo v2 framework (see SimCLR for 
alternative) 

2. Add in labels, and use for downstream tasks

Workflow

http://arxiv.org/abs/2012.13083
https://arxiv.org/abs/2003.04297
https://arxiv.org/abs/2002.05709
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Repres
ent

atio
ns

Visualize learned representations

2048 dim

2 dim

UMAP  1802.03426

Every data point represents a 5-band galaxy image

Self-supervised = no labels

arxiv: 2012.13083

https://arxiv.org/abs/1802.03426
http://arxiv.org/abs/2012.13083
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Visualize learned representations

UMAP 1

U
M

AP
 2

arxiv: 2012.13083

http://arxiv.org/abs/2012.13083
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Visualize learned representationsVisualize learned representations
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Visualize learned representationsVisualize learned representations
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Visualize learned representations
In context of labels

Labels have not been used during training, yet decision 
boundaries can almost be drawn by eye 

arxiv: 2012.13083

http://arxiv.org/abs/2012.13083
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Similarity search for data discovery
Given an image, find other “similar” images in the dataset

Downstream task #1

1. Select desired query image 
2. Compute similarity metric of query representation with all others 
3. Sort similarity by decreasing order and return images

Approach: 

Goal: 

arxiv: 2012.13083

2101.04293

http://arxiv.org/abs/2012.13083
https://arxiv.org/abs/2101.04293


Self-supervised representation learning for astronomical images 11

Similarity search for data discovery
Given an image, find other “similar” images in the dataset

Downstream task #1

1. Select desired query image 
2. Compute similarity metric of query representation with all others 
3. Sort similarity by decreasing order and return images

Approach: 

Goal: 

Figure 1: Reference SDSS galaxies from the validation set (leftmost panels with redshift labels) and
the most similar galaxies from the training set (following 5 panels) identified through a self-supervised
similarity search. White squares outline the 642 pixels that are “seen” by the network.

where, ⌧ 2 (0, 1) is a temperature parameter. Then, the parameters ✓k of the momentum encoder86

network are updated using the encoder parameters ✓q with momentum parameter m via87

✓k  m✓k + (1�m)✓q. (2)

The momentum update and use of a queue allow many negative examples to be seen throughout88

training without requiring massive batch sizes, making MoCo computationally efficient [6]. Following89

MoCov2, we set m = 0.999 and use the ResNet50 architecture [8] for the encoder and momentum90

encoder networks. However, we remove the first convolution and pooling layers in the ResNet91

and replace them with a single stride=1 convolution with 5 input feature channels to match the92

dimensionality of our dataset.93

Data Augmentations. We create different views of training samples using the following data94

augmentations:95

• Galactic extinction: To model the effects of foreground galactic dust, we introduce artificial96

reddening by sampling a E(B�V ) reddening value from U(0, 0.5) and applying the corresponding97

per-channel extinction according to the photometric calibration from [15].98

• Random rotate: The angle of rotation is sampled from U(0, 2⇡).99

• Random jitter & crop: Two integers are sampled from U(�7, 7) to move (jitter) the center of the100

image along each respective axis, then the jittered image is center-cropped to size 642.101

• Gaussian noise: We sample a scalar from U(1, 3) and multiply it with the aggregate median102

absolute deviation (MAD) of each channel (pre-computed over all training examples) to get a103

per-channel noise scale �c. Then, we introduce Gaussian noise sampled from N (0, �c) for each104

color channel.105

3 Results106

To evaluate the quality of our redshift estimates, we follow the statistics used in the literature [14, 13].107

The prediction residual is defined as �z = (zp � zs)/(1 + zs), where zp and zs correspond to108

photometric and spectroscopic redshifts respectively. From this, we compute the MAD deviation109

�MAD = 1.4826⇥MAD(�z) where MAD is the median of |�z�median(�z)|, and the percent ⌘ of110

“catastrophic” outliers with |�z| > 0.05. To the best of our knowledge, [13] provide state-of-the-art111

fully-supervised photometric redshift estimates, achieving �MAD = 0.00912 and ⌘ = 0.31 using all112

of their labeled data. Their network is trained to be a classifier over 180 bins of photometric redshifts113

linearly spanning z = (0, 0.4). Their estimate is computed as zp = E(z) using the probability density114

function given by the final softmax layer, so we use the same protocol.115

To properly evaluate our ResNet-based self-supervised approach, we also train fully-supervised116

ResNet50s on de-reddened versions of our labeled samples. This is done with 2.5%, 6.25%, 12.5%,117

3

As the contrastive self-supervised loss was similarity-based,  
the corresponding representations are by construction organized by their visual similarity

arxiv: 2012.13083

2101.04293

http://arxiv.org/abs/2012.13083
https://arxiv.org/abs/2101.04293


4 Hart et al.

A0: Smooth A1: Features
or disk

A2: Star or
artifact

A0: Yes A1: No

A0: Bar A1: No bar

A0: Spiral A1: No spiral

A0: No
bulge

A1: Just
noticeable

A2: Obvious A3:
Dominant

A0: Yes A1: No

A0: Ring A1: Lens or
arc

A2:
Disturbed

A3: Irregular A4: Other A5: Merger A6: Dust
lane

A0:
Completely

round

A1: In
between

A2: Cigar
shaped

A0:
Rounded

A1: Boxy A2: No
bulge

A0: Tight A1: Medium A2: Loose

A0: 1 A1: 2 A2: 3 A3: 4 A4: More
than 4

A5: Can't tell

T00: Is the galaxy simply smooth and rounded, with no sign of a disk?

T01: Could this be a disk viewed edge-on?

T02: Is there a sign of a bar feature through the
centre of the galaxy?

T03: Is there any sign of a spiral arm pattern?

T04: How prominent is the central bulge, compared with the rest of the
galaxy?

T05: Is there anything odd?

T06: Is the odd feature a ring, or is the galaxy disturbed or irregular?

T07: How rounded is it?

T08: Does the galaxy have a bulge
at its centre? If so, what shape?

T09: How tightly wound do the
spiral arms appear?

T10: How many spiral arms are there?

End

1st Tier Question

2nd Tier Question

3rd Tier Question

4th Tier Question

Figure 2. Diagram of the question tree used to classify galaxies in GZ2. The tasks are colour-coded by their depth in the question tree.
As an example, the arm number question (T10) is a fourth-tier question — to answer that particular question about a given galaxy, a
participant needs to have given a particular response to three previous questions (that the galaxy had features, was not edge-on and had
spiral arms).

c� 0000 RAS, MNRAS 000, 000–000
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Morphology classification
Goal: predict Galaxy Zoo 2 crowd sourced morphological labels directly from representations. 

Downstream task #2

arxiv: 2012.13083

Q: “Does the galaxy have features or a disk?”  
A: “smooth” or “features/disk” 

Q: “Could this be a disk viewed edge-on?”  
A: “Face-on” or “Edge-on”

Linear layer from 2048 dimensions to 1, 
followed by sigmoid activation.  

Trains in 0.5-10 seconds on a GPU

Approach: 

Complex decision tree

https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/
http://arxiv.org/abs/2012.13083


With highly limited number of training samples achieve high classification performance 
Using full set of labels achieve state-of-the-art 

No need to train separate networks for each classification task
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Morphological classification
Goal: predict Galaxy Zoo 2 crowd sourced morphological labels directly from representations.

Downstream task #2

arxiv: 2012.13083

“Soft” labels, with high degree of label uncertainty and mislabelling

https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/
http://arxiv.org/abs/2012.13083
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Photometric redshift prediction
Given an image, predict the redshift of the galaxy. ~500,000 labels from spectroscopic followup

Downstream task #3

Goal: 

Self-supervised pre-training results in accuracy equivalent to 2-4x more labelled samples over supervised learning

Approach: Linear layer, trained as a classifier over a discrete set of 180 redshift bins spanning 0 < z < 0.4
Fine-tune the encoder during training, using a small learning rate

http://arxiv.org/abs/2012.13083
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Summary

arxiv: 2012.13083

• yields notable performance gains over supervised learning for multiple tasks, using the same network 

• allows for accurate classifications with highly-limited number of training samples 

• representations provide a rich avenue for data discovery 

• representations allow for similarity search to pull out similar objects (one-shot anomaly detection)

Self-supervised representation learning:

Future avenues
• Automated anomaly detection, and how this can be done on the representations. 

Density based models?  

• Robustness quantification. Can we use this to determine in-distribution/out-of-
distribution for unlabelled samples?  

• Larger model trained on much more data, and serve to the community, much like the 
operation of existing state-of-the-art language models

Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty 

http://arxiv.org/abs/2012.13083
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Sketch for self-supervised learning in other fields

arxiv: 2012.13083

1. For given experiment, take all data with or without labels. Can be 1D, 2D, 3D, …  

2. Construct data augmentations that reflect changes in the data you want network to be 
agnostic to.  (don’t choose ones that effect semantic information of data for desired 
downstream tasks) 

• Rotations about certain axes 
• Jitter 
• Masking 
• Smoothing  
• Various types of noise 
• Scaling 

3. Learn representations through self-supervised contrastive framework 
4. Use representations for downstream tasks  

• Data discovery 
• Anomaly detection/similarity search 
• Classification tasks 
• Regression tasks 

5. Improve upon what is capable in a supervised framework 
  

examples: 

Big Self-Supervised Models Advance Medical Image Classification 

http://arxiv.org/abs/2012.13083
https://arxiv.org/abs/2101.05224
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Representations close to invariant under different augmentations

Extra Slides
Representations after augmentations

http://arxiv.org/abs/2012.13083
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Ablation study

arxiv: 2012.13083

Which augmentations are most powerful?

Photo-z application

RR: Random rotate 
JC: Jitter-crop 
GN: Gaussian Noise 
GR: Galactic reddening 
PS: PSF smoothing

Extra Slides

http://arxiv.org/abs/2012.13083
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Self-supervised learning frameworks

arxiv: 2012.13083

Photo-z application

Self-supervised representation learning performance on 
ImageNet top-1 accuracy in June, 2020, under linear 

classification protocol.

from Self-supervised Learning: Generative or Contrastive

Extra Slides

http://arxiv.org/abs/2012.13083
https://arxiv.org/abs/2006.08218
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Robustness

arxiv: 2012.13083

Unlabelled samples labelled samples

A large number of unlabelled samples are from different parts of the sky than those with labels 
By design, as (redshift) labels were obtained only for the cleanest images in sky surveys

This is apparent in the learned representation space, i.e. there are unlabelled 
samples that are not “near” any with labels 

(note there are still tonnes of blue dots hidden under green and pink ones) 

-> Use for robustness metric of inference on samples that do not have labels: 
Unlabelled samples “near" ones with labels = trust inference 

 Unlabelled samples far from any with labels = don’t trust inference 

“Near” can be linear classification, density based, iD/OoD, …  

Extra Slides

http://arxiv.org/abs/2012.13083

