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A B S T R A C T

This paper proposes a novel mathematical modeling framework for peripheral arterial and peripheral venous
blood pressure signals from porcine experiments. Peripheral blood pressure signals can be acquired using
regular catheters during standard patient treatment. The minimally invasive nature and ubiquitous availability
of catheters render it an ideal candidate for various applications. However, there is no analytical model for
peripheral blood pressure signals in the literature. We address this issue by proposing a model for these signals
under the integral pulse frequency modulation (IPFM) framework. The model incorporates the impacts of
physiological phenomena, such as the heartbeat pulse shape variation, heart rate variability, respiratory rate,
etc. The model parameters are obtained by applying the IPFM model to experimental data collected from
four pigs under different anesthetic dosages. The proposed model can fit the experimental data with Pearson
correlation coefficients greater than 0.99 and 0.90 for arterial and venous blood pressure signals, respectively.
The performance of model-synthesized data on the classification of two different anesthesia is comparable with
experimental data. Parameters like pulse shape and duration can also work as distinguishable features under
different anesthesia. We also proposed a way to distinguish respiratory-induced heart rate variability from
other causes. Increasing doses of vasodilating anesthesia is similar to going from dehydration to hydration.
Thus the results obtained in this study can be extended in distinguishing hydrated and dehydrated subjects.
This model can be extended to similar biomedical signals like photoplethysmography, cerebral blood flow
velocity, and Doppler waveforms.
1. Introduction

Peripheral arterial pressure (PAP) and peripheral venous pressure
(PVP) signal properties can provide valuable information regarding the
clinical conditions of patients. For example, the PVP signal is strongly
correlated with the central venous pressure (CVP) signal [1,2]. CVP is
the pressure in the first and second-order branches of veins that drain
into the right atrium of the heart. However, the collection of CVP relies
on the invasive placement of a central monitor and contains significant
risk and time to place correctly. PAP or PVP signals, on the other hand,
can be collected with regular intravenous and intra-arterial catheters
that are widely available and routinely used. The minimally invasive
nature combined with the ubiquitous availability of catheters renders
it as an ideal candidate for a wide range of applications in patient
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care. For example, PVP signals have been used in a wide range of
medical scenarios, such as pediatric surgery [3], laparoscopic colorectal
surgery [1], craniotomy or complex spine surgery [4], patients with
acute decompensated heart failure [5], etc.

The study and analysis of PVP signals have attracted considerable
attention recently [6–12]. It is shown that PVP signals can be used to
predict dehydration in the pediatric population [13]. PVP signals are
used to assess the dehydration level of infants suffering from pyloric
stenosis and hemorrhage during craniosynostosis repair [14]. PVP sig-
nals are also related to other peripheral blood pressure signals. A recent
study shows that the PVP signal is strongly correlated with peripheral
arterial pressure (PAP) [15] signal. The Photoplethysmogram (PPG)
signal is similar in nature to PVP signal in that both are directly related
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to blood flow, and the relationship between PPG and PVP signals is
studied in [16]. However, there is a lack of research on the modeling
of PAP and PVP signals. Parametric modeling of these signals can help
us understand the generation process behind the signals, thus providing
insights into their relations to various physiological phenomena.

Signal modeling is an important tool that can be used to understand
the physiology and generative process behind a biomedical signals.
It also helps to quantify and predict the changes in the signal under
different internal and external impact circumstances. This can signif-
icantly improve treatment outcomes in many situations, which is the
overall goal of this work. Several models are developed to represent
the behaviors of PPG signals. For example, in [17], the PPG signal
is modeled by using a synthesis-by-analysis technique. Synthetic PPG
models are developed to generate PPG waveforms with two combined
Gaussian functions, and they can model both regular and irregular
heartbeats [18,19]. A modulation-based PPG model is proposed in [20]
to extract vital signs from PPG signals. There are a wide range of
models for ECG signals. In [21], a modified Zeeman model with an
artificial neural network is developed to generate ECG signals. In [22],
12-lead ECG signals are modeled by using bidomain equations coupled
to a phenomenological ionic model in the heart and a generalized
Laplace equation in the torso. An ECG model that simulates the main
pacemakers in the heart by using a set of three nonlinear oscillators
produced by discretized reaction-diffusion system is proposed in [23].
In [24], Gaussian functions along with hybrid optimization methods
have been proposed to model ECG morphology in different cardiac
dysrhythmias. To the best of our knowledge, no analytical model is
available for peripheral blood pressure signals.

In this paper, we propose to build an analytical model for PAP and
PVP signals with the framework of integral pulse frequency modula-
tion (IPFM). IPFM was first introduced in [25] for analyzing nervous
systems. It was later applied to model heart rate variability (HRV)
studies [26,27]. IPFM uses irregularly spaced spikes to imitate the
physical properties behind HRV [28]. Improved HRV modeling and
analysis with IPFM are presented in [29–31]. In all existing works, the
IPFM model has only been used to model the onset of pulses, and none
can be found to model the signal itself. To the best of our knowledge,
the IPFM model was never applied to PAP and PVP signals before.

In recognition that the peripheral blood pressure signals are affected
by HRV through frequency modulation (FM) and respiration signals
through amplitude modulation (AM), we propose to capture these
physiological phenomena by using IPFM. The utilization of IPFM allows
us to focus on the physiology of peripheral blood pressure signals
without dealing with complex spectrum analyses of AM-FM signals.
Unlike existing IPFM models that focus solely on the onset of pulses,
the proposed work combines IPFM with convolution analysis, which
allows us to model the shape of the peripheral waveforms.

Under the IPFM framework, the proposed model is developed by
analyzing the properties of PAP and PVP signals collected from pig
experiments. The newly proposed model is more general than the
modulation model in [20]. The model parameters are learned by fitting
the developed IPFM model to the experimental data. The accuracy and
efficacy of the model are evaluated by comparing model-synthesized
data with experimental data. It is demonstrated that the proposed
model matches very well with the experimental results.

The rest of the paper is organized as follows. Section 2 discusses
the experimental setup and data acquisition process. The proposed
IPFM modeling framework is introduced in Section 3. In Section 4, a
numerical modeling fitting method is proposed to estimate the model
parameters by fitting the model to the experimental data. The perfor-
mance of the model is evaluated in Section 5. Section 6 discusses some
qualitative properties of some of the model parameters, and Section 7
2

concludes the paper.
Table 1
Pig subjects used in this study.

Subject Weight Age Controlled Blood-weight
(kg) (weeks) blood loss (ml) ratio (ml/kg)

Pig1 70 16 1270 18.14
Pig2 74 17 923 12.47
Pig3 74 17 963 13.01
Pig4 73 17 910 12.47

2. Experiment setup and data acquisition

This section describes the setup of the experiment, the demograph-
ics of the animal subjects, the data acquisition system, and the data
collection workflow at different stages of anesthesia, and the overall
design of the experiment.

2.1. Pig demographics

In this study, four female pigs were used. All pigs were between ages
16–17 weeks, at a weight of 70–74 kg at the time of the experiment.
The detailed demographics are listed in Table 1. During the exper-
iment, the pigs were anesthetized and experienced controlled blood
loss. The average blood-weight ratio is 13.97 ml/kg. The study was
performed following the approval of the University of Arkansas for
Medical Sciences (UAMS) institutional animal care and use committee.

2.2. Data acquisition system

Millar Mikro-Tip® solid-state catheters with a pressure sensor(s)
rovide high-fidelity cardiovascular pressures (the heart and vascular
ystem) at the source in small animals [32]. Two Millar pressure
atheters are used at the brachial artery and brachial vein to collect
rterial (PAP) and venous (PVP) pressure signals, respectively. Fig. 1 is
he schematic diagram of the data acquisition system. For Pigs 1 and
, Millar catheters of size 5F (Millar SPR-350S) were used. Whereas,
illar catheters of size 2F (Millar SPR-320) were used for Pigs 3

nd 4. Here, F indicates the French catheter scale (1F corresponds
o an external diameter of 1/3 mm). Catheters were then connected
o a pressure control unit (Millar PCU-2000) via catheter interface
ables (ADInstruments PEC-10D). The output of the pressure control
nit is then connected to a National Instruments (NI) USB-6009 data
cquisition system.

While inserting the Millar catheters, the distance between the
atheters was observed using ultrasound systems (BK500, BK Med-
cal) to make sure they were within 3–4 cm apart. Datex Ohmeda
estiva 5 (GE Healthcare) anesthesia machine was used to maintain
echanical ventilation greater than the respiratory rate of 0.2 Hz (12

pm). At lower anesthetic levels a deviation from 0.2 Hz is expected.
n the other hand, at higher anesthetic levels the pigs do not show

elf-breathing tendency, and the respiratory rate shows very little
eviation.

It should be noted that this paper models the voltage signal recorded
t the USB-6009 data acquisition system. The voltage (Volt) and the
ressure (mmHg) are proportional to each other and are related in a
inear relationship. Thus, the signal used in this study can have negative
alues.

.3. Data collection workflow

After inserting and attaching the transducers, the pigs were anes-
hetized using Isoflurane (C3H2ClF5O). Isoflurane, a widely used gen-
ral anesthetic, and vasodilator is given via inhalation. Vasodilation
nd vasoconstriction are the widening and narrowing of blood vessels
espectively. The amount of Isoflurane was changed to 1.8%, 2.5%,
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Fig. 1. Schematic diagram of peripheral arterial pressure (PAP) and peripheral venous pressure (PVP) signals being collected using Millar SPR-3x0 (solid-state) catheters with
National Instrument USB-6009 data acquisition system.
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Table 2
Data collection workflow.

Action Amount Abbreviation

Isoflurane a1.80 MAC-1
(%) a2.50 MAC-2

a2.80 MAC-3
2.00
1.50

Propofol a0.10 PRO-1
(mg/kg/min) a0.15 PRO-2

a0.20 PRO-3
0.05

Bleeding

Propofol 0.05

Isoflurane 1.50
2.00

aDenote the data used in this paper.

2.8%, 2.0%, and 1.5% over time. In terms of minimum alveolar concen-
tration (MAC), Isoflurane 1.8%, 2.5%, and 2.8% are considered MAC-1,
MAC-2, and MAC-3, respectively.

Propofol (C12H18O), another widely used anesthetic and vasodilator,
was injected into the veins following Isoflurane delivery. The amount
of Isoflurane was changed to 0.10 mg/kg/min, 0.15 mg/kg/min, 0.20
mg/kg/min, and 0.05 mg/kg/min. At this stage, all pigs went through
bleeding from the femoral artery of the right leg. The amount of blood
loss for each pig is listed in Table 1. After bleeding, Propofol 0.05
mg/kg/min is followed by Isoflurane 1.5% and 2.00%.

Propofol 0.10 mg/kg/min, 0.15 mg/kg/min, and 0.20 mg/kg/min
are denoted as PRO-1, PRO-2, and PRO-3, respectively in this paper.
Also note that PRO-1 stage does not immediately start after MAC-3.
The data collection workflow is summarized in Table 2.

In the original setup of this experiment, multiple other signals
were collected. Based on the signal quality during the data collection
procedure, this paper only deals with PAP and PVP signals. PAP and
PVP signal acquisition processes do not show a blood clotting tendency
in the Millar catheter. It should be made clear that this paper treats
PAP and PVP signals as peripheral blood pressure signals as both are
collected from the brachial artery and brachial vein respectively.

During dehydration or blood loss, humans and animals have the
tendency to constrict blood vessels, i.e., narrowing of blood vessels that
is also known as vasoconstriction. Vasodilators such as Isoflurane and
Propofol can on the other hand widen the blood vessels. So, during
the MAC-3 stage the blood vessels are wider compared to MAC-1. Thus
compared to MAC-3, MAC-1 has a similar effects as the dehydrated
state. The same reasoning holds for the PRO stages. This motivates the
study of the various peripheral blood pressure signals under different
stages of anesthesia in this experiment.

3. Parametric signal modeling

The two main components embedded in peripheral blood pressure
signals are heart rate (with harmonics) and respiratory rate signals.
These two signals are modulated with each other.
3

𝑘

However, the heart rate does not remain constant over time. There
is always a time-dependent variation in heart rate. The variation in
heart rate is called heart rate variability (HRV). HRV is an important
indicator of the autonomic nervous system (ANS). ANS is a network
of nerves that handles unconscious tasks like heartbeat and breathing.
This is why the HRV is an important physiological and neurolog-
ical indicator of sympathetic (quick ‘‘fight-or-flight’’ response) and
parasympathetic (slow response) activities of ANS. High HRV indicates
a healthy nervous system that is responsive to both sympathetic and
parasympathetic inputs. This is why HRV is still a highly active field of
research.

HRV can be contributed by multiple sources. The main cause of
HRV is respiration. Heart rate increases and decreases with inhalation
and exhalation, respectively. Such respiratory-induced HRV is called
respiratory sinus arrhythmia (RSA). There are also other long-term
sources of HRV such as ANS imbalance, heart diseases (like Arrhyth-
mia), stress, poor sleep, unhealthy diet, lack of exercise, etc. The signal
model proposed in the paper isolates the impact of respiration from
heart rate signal.

The IPFM-based parametric model is developed based on the hy-
pothesis that the occurrences of pulse onsets are initiated by a
continuous-time modulating signal 𝑚(𝑡), which has certain physiolog-
ical interpretations [28,33]. A pulse onset trigger impulse is generated
when the integration of 𝑚(𝑡) reaches a certain threshold. It is assumed
that |𝑚(𝑡)| ≪ 1 and its Fourier transform ℱ {𝑚(𝑡)} = 𝑀(𝜔) is ban-
dlimited with negligible power spectral density beyond a frequency
typically around 0.4–0.5 Hz [28,33]. It is also assumed that 𝑚(𝑡) is a
zero-mean signal, i.e., 𝑀(0) = 0.

Denote 𝑡𝑘 as the time instant of the onset or occurrence of the 𝑘th
heartbeat. Without loss of generality, it is assumed that the first pulse
onset occurs at time 𝑡0 = 0 and 𝑚(𝑡) is causal [34], that is, 𝑚(𝑡) = 0 for
𝑡 < 0. Based on the principle of the IPFM model [28], the following
equation relates 𝑡𝑘 with 𝑚(𝑡) [28, Equation (1)]

𝑇 = ∫

𝑡𝑘+1

𝑡𝑘
[1 + 𝑚(𝑡)]𝑑𝑡, (1)

or alternatively

𝑘 = ∫

𝑡𝑘

0

1 + 𝑚(𝑡)
𝑇

𝑑𝑡, (2)

where 𝑇 is the mean heart rate interval in seconds, and 1
𝑇 is the mean

eart rate in Hertz.
In the IPFM model, the continuous-time signal 𝑚(𝑡) models the

ynamic variability of the heart rate. When 𝑚(𝑡) = 0, there will be no
RV with 𝑡𝑘+1 − 𝑡𝑘 = 𝑇 for all 𝑘 ∈ Z+ = {0, 1, 2,…}.

Another related and important signal is the heart timing signal 𝜃(𝑡𝑘),
hich is defined as the deviation of heartbeat occurrence time 𝑡𝑘 from

he mean occurrence time 𝑘𝑇 [28]. From (2), we have

(𝑡𝑘) = 𝑘𝑇 − 𝑡𝑘 = ∫

𝑡𝑘

0
𝑚(𝜏)𝑑𝜏. (3)

Eq. (3) presents a non-uniformly sampled version of 𝜃(𝑡). The
ontinuous-time heart timing signal 𝜃(𝑡) can be approximated by per-
orming spline interpolation over the discrete time samples, 𝜃(𝑡𝑘), for
∈ Z+. In this paper, cubic spline interpolation is used to estimate 𝜃(𝑡)
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from 𝜃(𝑡𝑘). The knowledge of 𝜃(𝑡) can be used to estimate the signal
𝑚(𝑡) as

𝑚(𝑡) =
𝑑𝜃(𝑡)
𝑑𝑡

. (4)

The conventional IPFM framework can only be used to model the
onset of pulses, and it cannot be readily applied to model continuous-
time waveforms such as the PAP or PVP signals. In this paper, we
extend the IPFM model to model the continuous-time waveform of the
signal, instead of just modeling the onset pulses as in the literature.
Based on this proposed model, the respiratory signal, 𝑟(𝑡), is modulated
with the heart rate signal, 𝑥(𝑡). The signal 𝑥(𝑡) is not just the heart rate
and its higher-order harmonics. However, we refer to it as the heart rate
signal for simplicity. Both 𝑟(𝑡) and 𝑥(𝑡) are constituent components of
PAP or PVP signals. Based on this idea, the continuous-time waveform
𝑥(𝑡) can be modeled by performing convolution between the IPFM
pulses with the single heartbeat pulse of the heartbeat signal.

A single heartbeat pulse is defined as 𝑝(𝑡) with support 𝑇 . Under
the proposed model, the heart rate signal in the time domain can be
represented as

𝑥(𝑡) =
∑

𝑘
𝑝
(

𝑇
𝑡𝑘+1 − 𝑡𝑘

𝑡
)

⊗ 𝛿(𝑡 − 𝑡𝑘), (5)

where ⊗ denotes continuous time convolution. Given that |𝑚(𝑡)| ≪ 1,
e employ the approximation that 𝑡𝑖+1−𝑡𝑖 ≈ 𝑇 , and (5) can be simplified

o

(𝑡) = 𝑝(𝑡)⊗
∑

𝑘
𝛿(𝑡 − 𝑡𝑘). (6)

his approximation is only used to facilitate the modeling process to
emonstrate how different components of the signal are interacting
ith each other, and the final modeled signal still follows (5).

Once the pulse onset time instants {𝑡𝑘}𝑘∈Z+ are known, a non-
niformly spaced pulse train is defined as

(𝑡) ≜
∑

𝑘
𝛿(𝑡 − 𝑡𝑘), (7)

=
1 + 𝑚(𝑡)

𝑇

[

1 + 2
∞
∑

𝑛=1
cos

( 2𝑛𝜋
𝑇

(

𝑡 + 𝜃(𝑡)
)

)

]

. (8)

etailed derivations of (8) is in Appendix A. The second equality
ollows from the fact that |1 + 𝑚(𝑡)| = 1 +𝑚(𝑡) as |𝑚(𝑡)| ≪ 1. As a sanity

check, when 𝜃(𝑡) is constant, i.e., 𝑚(𝑡) = 0, then 𝑠(𝑡) corresponds to an
impulse train.

Using the definitions above, the observed PAP or PVP signal 𝑦(𝑡) can
then be modeled as

𝑦(𝑡) = 𝜏(𝑡) +
[

𝛼 + 𝑟(𝑡)
][

𝛽 + 𝑥(𝑡)
]

(9)

where 𝜏(𝑡) is a slow-changing bias or drift introduced by the data
acquisition system, 𝑟(𝑡) is the respiratory signal, 𝑥(𝑡) = 𝑝(𝑡) ⊗ 𝑠(𝑡) is
the heart rate signal, and 𝛼 and 𝛽 are the DC offsets of 𝑟(𝑡) and 𝑥(𝑡),
respectively. The signal 𝜏(𝑡) has zero mean, hence the DC value of the
signal 𝑦(𝑡) is 𝛼𝛽.

Eq. (9) incorporates the fact that 𝑥(𝑡) is amplitude modulated by 𝑟(𝑡).
From (8), it is clear that the signal 𝑠(𝑡) and thus heart rate signal 𝑥(𝑡)
are dependent on 𝑚(𝑡). The signal 𝑥(𝑡) does not contain any component
of 𝑟(𝑡). This property separates the impact of the respiratory signal 𝑟(𝑡)
from the modulating signal 𝑚(𝑡) and the heart rate signal 𝑥(𝑡). Based on
the physiological conditions, the signals 𝑚(𝑡) and 𝑟(𝑡) can be correlated.
In that case, the strength of the correlation between 𝑚(𝑡) and 𝑟(𝑡) can
indicate the strength of RSA on HRV. The parametric model presented
in (9) includes the effects of heartbeat, respiration, HRV, and their
mutual interactions. The parameters of the model can be estimated or
learned by fitting the model to the experimental data.

4. Model fitting

In this section, both numerical and computational approaches are
employed to model the experimental data collected from the pig sub-
4

jects by using the theoretical foundations of the previous section. e
4.1. Model reformulation

Given that the measured signals contain impacts from multiple
physiological factors at different frequency ranges, we reformulate the
signal model to reflect the diverse signal compositions. The reformula-
tion will facilitate the model fitting process.

From (8), define the heart rate and its harmonics as

ℎ(𝑡) ≜ 2
∞
∑

𝑛=1
cos

( 2𝑛𝜋
𝑇

(

𝑡 + 𝜃(𝑡)
)

)

. (10)

The pulse train 𝑠(𝑡) defined in (8) can then be alternatively repre-
ented as

(𝑡) =
[

1 + 𝑚(𝑡)
𝑇

]

[1 + ℎ(𝑡)] ,

= 1
𝑇

+ 1
𝑇
𝑚(𝑡) + 1

𝑇
ℎ(𝑡) + 1

𝑇
𝑚(𝑡)ℎ(𝑡). (11)

Combining the definition of 𝑠(𝑡) from (7) with (6) gives

(𝑡) = 𝑝(𝑡)⊗ 𝑠(𝑡) = 𝛾 + 1
𝑇
𝑝(𝑡)⊗ ℎ(𝑡) + 𝑞(𝑡), (12)

here

𝛾 ≜ 1
𝑇 ∫

𝑇

0
𝑝(𝑡)𝑑𝑡, (13)

𝑞(𝑡) ≜ 1
𝑇
𝑝(𝑡)⊗ [𝑚(𝑡)(1 + ℎ(𝑡))] . (14)

ombining (9) and (12) yields,

(𝑡) = 𝜏(𝑡) + 𝛼𝛽 + 𝛽𝑟(𝑡) + 𝛼𝑥(𝑡) + 𝑥(𝑡)𝑟(𝑡),

= 𝜏(𝑡) + 𝑦LF (𝑡) + 𝑦HF (𝑡), (15)

here

𝑦LF (𝑡) ≜ 𝛼(𝛽 + 𝛾) + (𝛽 + 𝛾)𝑟(𝑡),

=
[

𝛽 + 𝛾
][

𝛼 + 𝑟(𝑡)
]

, (16)

HF (𝑡) ≜ [𝛼 + 𝑟(𝑡)]
[ 1
𝑇
𝑝(𝑡)⊗ ℎ(𝑡) + 𝑞(𝑡)

]

,

= [𝛼 + 𝑟(𝑡)]�̃�(𝑡). (17)

ere, �̃�(𝑡) ≜ 𝑥(𝑡) − 𝛾 = 1
𝑇 𝑝(𝑡)⊗ ℎ(𝑡) + 𝑞(𝑡).

In the reformulated model given in (15), the pressure signal 𝑦(𝑡) is
ecomposed into three components, the very slow changing bias 𝜏(𝑡),
he low-frequency component due to respiratory activities 𝑦LF (𝑡), and
he high-frequency component 𝑦HF (𝑡) dominated by heart rate. Also, it
hould be noted that 𝛾 is the DC value of the signal 𝑥(𝑡) and thus �̃�(𝑡)
s a zero-mean signal.

.2. Model fitting

With the reformulated model presented in (15), we can numerically
stimate the reformulated model parameters from the experimental
ata 𝑦𝑟(𝑡). Details of the model fitting process are given in Algorithm 1.

The model fitting process is developed by separating the bias 𝜏(𝑡),
he low-frequency component 𝑦LF (𝑡), and the high-frequency component
HF (𝑡), from the experimental data.

At first, the recorded experimental data 𝑦𝑟(𝑡) is bandlimited by pass-
ng through a low pass filter with cutoff frequency 𝑓𝑐 = 15 Hz to remove
oises from the data collection process. The stopband attenuation of the
ow pass filter is 60 dB. The cutoff frequency is chosen based on the fact
hat the fundamental frequency of heart rate is usually at 2 Hz or lower,
hus its harmonics are usually well below 15 Hz. Denote the output of
he low pass filter as 𝑦(𝑡).

The bias 𝜏(𝑡) is a small drift introduced by the data acquisition
ystem, and it changes much slower than the respiratory or heart rate
ignals. The bias signal is estimated using a simple moving average (low
ass) filter of a window length of 30 s. Fig. 2 shows an example of the

xperimental data, 𝑦𝑟(𝑡), the corresponding bandlimited signal, 𝑦(𝑡), and
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the slow changing bias, 𝜏(𝑡), from the PAP signal collected from Pig-2
during MAC-2.

The bias-corrected signal, �̃�(𝑡) ≜ 𝑦(𝑡)−𝜏(𝑡), passes through a low pass
filter with cutoff frequency 𝑓0 to separate the low and high-frequency
components, 𝑦LF (𝑡) and 𝑦HF (𝑡), respectively. The cutoff frequency 𝑓0 is
chosen below the heart rate but above the respiratory harmonics. In
this paper, we use 𝑓0 = 0.5 Hz, and the stopband attenuation of this
low pass filter is 60 dB. Examples of �̃�(𝑡) with the corresponding 𝑦LF (𝑡)
and 𝑦HF (𝑡) from Pig-2 during MAC-2 are shown in Fig. 3.

The model parameters, 𝛼, 𝛽 + 𝛾, 𝑟(𝑡), and �̃�(𝑡) can then be estimated
by using the filtered signals, 𝑦LF (𝑡) and 𝑦HF (𝑡). From (17), the high-
frequency component 𝑦HF (𝑡) can be equivalently considered as �̃�(𝑡)
amplitude modulated by the low-frequency signal 𝛼+𝑟(𝑡). Thus the low-
frequency modulating signal, 𝛼 + 𝑟(𝑡), is embedded in the amplitude of
𝑦HF (𝑡). Consequently, 𝛼 + 𝑟(𝑡) can be estimated by performing envelope
detection over 𝑦HF (𝑡) as shown in Fig. 4. Denote the upper and lower
envelopes of 𝑦HF (𝑡) as 𝑒𝑢(𝑡) and 𝑒𝑙(𝑡), respectively. Under the assumption
of ideal envelope detection, we have 𝑒𝑢(𝑡) = −𝑒𝑙(𝑡) = 𝛼 + 𝑟(𝑡). Then the
DC offset 𝛼 can be estimated as

𝛼 =
𝑒𝑢 − 𝑒𝑙

2
, (18)

here 𝑒 denotes the time average of the signal 𝑒(𝑡) and 𝑟(𝑡) is assumed
o be a zero-mean signal. Envelopes are estimated using spline interpo-
ation over local maxima using the ‘‘envelope(_, _, ‘peak’)’’ function of
atlab. As can be seen from (16), the mean value of the 𝑦LF signal is

�̄�LF = 𝛼(𝛽 + 𝛾). Similarly, the parameter 𝛽 + 𝛾 can be estimated as

+ 𝛾 =
�̄�LF

𝛼
. (19)

Given the parameters 𝛼 and 𝛽 + 𝛾, the signals 𝑟(𝑡) and �̃�(𝑡) can then
e estimated by using (16) and (17) as

𝑟(𝑡) =
𝑦LF (𝑡)
𝛽 + 𝛾

− 𝛼, (20)

�̃�(𝑡) =
𝑦HF (𝑡)
𝛼 + 𝑟(𝑡)

. (21)

The signal �̃�(𝑡) is the heart rate signal without the DC offset 𝛾. A peak
detection algorithm is applied to �̃�(𝑡) to identify the time of systolic
cycle onset or the beginning of a pulse as shown in Fig. 4. Details of the
onset detection algorithm are given in Section 4.3. It should be noted
that the onset detection algorithm is not applied on 𝑦HF (𝑡) because,
based on (17), it is modulated by 𝛼 + 𝑟(𝑡). To ignore the effect of 𝑟(𝑡),
the onset detection is performed over �̃�(𝑡) instead of 𝑦HF (𝑡). This can be
also observed in Fig. 4.

The onset detection algorithm is used to estimate the systolic cycle
onset or the pulse onset time {𝑡𝑘}𝑘∈Z+ , which is then used to construct
an estimate of the impulse train 𝑠(𝑡) defined in (7). After estimating
{𝑡𝑘}𝑘∈Z+ , the mean pulse shape �̃�(𝑡) is estimated by taking average from
aggregating all the pulses. Ideally, the initial value 𝑝(0) and the final
value 𝑝(𝑇 ) of the pulse 𝑝(𝑡) should be equal. To make this happen, a
linear normalization is performed on the mean pulse shape �̃�(𝑡) as

𝑝(𝑡) = �̃�(𝑡) −
�̃�(𝑇 ) − �̃�(0)

𝑇
𝑡.

Fig. 8 is an example of the estimated 𝑝(𝑡). Based on (13), the
parameter 𝛾 can be easily estimated by taking the time average of
the pulse 𝑝(𝑡). With the estimated parameters {𝑡𝑘}𝑘∈Z+ , 𝑇 and 𝑝(𝑡), we
can construct a synthesized model signal �̂�(𝑡) by using (5) (Step 7 in
Algorithm 1). Once �̂�(𝑡) is constructed, we can construct a synthesized
version of the overall signal by following Step 8 in Algorithm 1.

It should be noted that at Step 5 of Algorithm 1, the signal 𝛼 + 𝑟(𝑡)
must be non-zero at all times to avoid dividing by zero. To make sure
that this signal does not cross zero, a DC offset is added to the signal
𝑦(𝑡), when needed, without loss of generality. In the case of the PVP
signal, an offset of 1 has been added to 𝑦(𝑡).
5

f

Fig. 2. Example of separating high-frequency noise and trend from recorded signal
𝑦𝑟(𝑡) (Pig-2 MAC-2 PAP). Here, 𝑦(𝑡) obtained after filtering 𝑦𝑟(𝑡) and 𝜏(𝑡) is zero-mean
rend of the signal 𝑦(𝑡). Regarding 𝜏(𝑡), the whole signal recording has a mean zero.

Fig. 3. Separating high-frequency component 𝑦
HF
(𝑡) and low-frequency component 𝑦

LF
(𝑡)

from �̃�(𝑡) = 𝑦(𝑡) − 𝜏(𝑡) signal (Pig-2 MAC-2 PAP). 𝑦
LF
(𝑡) is a linear transformation of

espiratory signal 𝑟(𝑡).

.3. Pulse onset detection

Pulse onset detection is a crucial part of the signal modeling process.
ased on the nature of the signal, two different kinds of onset detection
lgorithms are used.

For the PVP signals, the onset detection can be performed by
sing peak detection algorithms that are similar to the ones used for
CG [35], PPG [36] and other related signals [37]. In this paper, the
nset is detected using ‘‘findpeaks()’’ function of Matlab on −�̃�(𝑡). After
etecting a peak, a certain time (in the range between 500–800 ms) is
aited to find the next peak. The wait time depends on the fundamental
eart rate frequency of the signal.

For the PAP signal, the onset detection is performed by using a
urrogate signal defined as the Slope sum function (SSF) [38]. This SSF
s basically the accumulation of non-zero slopes looking back in time
ver a certain duration (120 ms in this paper). The SSF signal has a
harp rise after the systolic onset. A threshold is selected (non-adaptive
n this case as it is applied on �̃�(𝑡) signal) by taking the average of the
irst 8 s of the SSF signal. If a point exceeds the threshold, a search is
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Fig. 4. Estimating envelope 𝑒𝑢(𝑡) and 𝑒𝑙(𝑡) from 𝑦
HF
(𝑡) signal (Pig-2 MAC-2 PAP). The

odel aims to flatten the envelope for �̂�(𝑡) signal.

Table 3
PAP and PVP Signal duration (unit: minutes).

Subject MAC-1 MAC-2 MAC-3 PRO-1 PRO-2 PRO-3

Pig-1 21.08 13.79 2.42 20.58 16.94 9.89
Pig-2 18.74 6.45 22.30 20.01 12.50 13.31
Pig-3 20.84 20.37 19.89 33.43 19.43 30.38
Pig-4 20.12 19.97 10.00 20.39 21.34 20.39

performed on the neighborhood (60 ms before and after the crossing)
to detect the onset. Once an onset is found, the process of searching
for a new onset is paused for the next 500 ms. This method works well
for PAP signals because it has a sharp change at systolic onset and the
location and shape of the dicrotic notch do not cause trouble in the
pulse onset detection procedure.

It should be also made clear that these algorithms are not always
100% correct in detecting onset time. There is false detection of onset
time and the synthesized signal quality is compromised at those time
instances.

5. Performance evaluation

In this section, the proposed model is applied to experimental
PAP and PVP signals. The performance of the new model is evalu-
ated by comparing the model-synthesized signals with their respective
experimental counterparts in terms of both signal fidelity and their
capabilities in classifying the different anesthetic stages of the animal
subjects.

5.1. Dataset description

The duration of PAP and PVP signals under different MAC and PRO
levels used in this paper are shown in Table 3. At each stage, the PAP
and PVP signals are of the same duration and are synchronized. The
sampling rate of all the signals is 1000 samples/s.

5.2. Model fitting performance

To evaluate the similarity between the experimental and model-
synthesized signals, Pearson’s correlation coefficient has been used. It
has been used in similar papers [39,40] and defined as

𝜌 =
∑

𝑖(𝑦[𝑖] − �̄�)(�̂�[𝑖] − ̄̂𝑦)
√

∑ 2
√

∑ ̄ 2
. (22)
6

𝑖(𝑦[𝑖] − �̄�) 𝑖(�̂�[𝑖] − �̂�) m
Algorithm 1 IPFM model fitting of blood pressure signal
Input: Experimental signal 𝑦𝑟(𝑡)
Output: Synthesized signal, �̂�(𝑡)
1: Band-limiting the input signal 𝑦𝑟(𝑡) to discard frequency

components beyond 15 Hz and this filtered signal is
denoted as 𝑦(𝑡).

2: Apply a simple moving average filter with a window length of 30
s to extract the zero-mean bias 𝜏(𝑡) of the signal.

3: Apply a low-pass filter with cutoff frequency 𝑓0 = 0.5 Hz to the
bias-corrected signal, �̃�(𝑡) = 𝑦(𝑡) − 𝜏(𝑡), to separate low and high
frequency component 𝑦LF (𝑡) and 𝑦HF (𝑡) respectively as

�̃�(𝑡) = 𝑦(𝑡) − 𝜏(𝑡) = 𝑦LF (𝑡) + 𝑦HF (𝑡).

4: Find the upper envelope 𝑒𝑢(𝑡) and lower envelope 𝑒𝑙(𝑡) of the signal
𝑦HF (𝑡).

5: Estimate 𝛼, 𝛽 + 𝛾, 𝑟(𝑡) and �̃�(𝑡) using the following equations

𝛼 =
𝑒𝑢 − 𝑒𝑙

2
,

𝛽 + 𝛾 =
�̄�LF

𝛼
,

𝑟(𝑡) =
𝑦LF (𝑡)
𝛽 + 𝛾

− 𝛼,

�̃�(𝑡) =
𝑦HF (𝑡)
𝛼 + 𝑟(𝑡)

.

6: The signal �̃�(𝑡) is used to estimate {𝑡𝑘}𝑘∈Z+ or 𝑠(𝑡), 𝑝(𝑡) and 𝑇 using
onset detection algorithm in 4.3. Pulse 𝑝(𝑡) is used to estimate 𝛾 as

𝛾 = ∫

𝑇

0
𝑝(𝑡)𝑑𝑡.

7: To incorporate pulse width modulation, using (5)

�̂�(𝑡) =
∑

𝑘
𝑝
(

𝑇
𝑡𝑘+1 − 𝑡𝑘

𝑡
)

⊗ 𝛿(𝑡 − 𝑡𝑘).

8: Synthesize �̂�(𝑡) as follows

𝑦LF (𝑡) =
[

𝛽 + 𝛾
][

𝛼 + 𝑟(𝑡)
]

𝑦HF (𝑡) =
[

𝛼 + 𝑟(𝑡)
][

�̂�(𝑡) − 𝛾
]

�̂�(𝑡) = 𝜏(𝑡) + 𝑦LF (𝑡) + 𝑦HF (𝑡)

where 𝑦[𝑛] and �̂�[𝑛] are discrete time samples of the signal 𝑦(𝑡) and �̂�(𝑡),
respectively. Also, �̄� and ̄̂𝑦 are the mean of the samples 𝑦[𝑛] and �̂�[𝑛]. A
value closer to 𝜌 = 1 corresponds to a perfect fit.

The 𝜌 values obtained by fitting the proposed IPFM model to PAP
nd PVP signals are tabulated in Tables 4, and 5 respectively. For the
AP signals, the 𝜌 between the synthesized and experimental data is, in
eneral, greater than 0.991 except in one case: Pig-4 at PRO-1 and 𝜌 is
till greater than 0.980, which indicates an excellent matching between
he synthesized signals and their experimental counterparts. For PVP
ignals, the 𝜌 values are greater than 0.90 except for five stages (three
AC and two PRO). PVP signals with short duration in time have low

orrelation values.
Figs. 5, and 6 show examples of the experimental and synthesized

ignals for PAP and PVP signals, respectively, both collected from Pig-
during MAC-2. The synthesized signals match very well with their

xperimental counterparts, and this provides a visual verification of the
or the correlation results in Tables 4, and 5.

We tried to explore some similar studies to compare the perfor-
ance with our proposed model. As there do not exist any peripheral
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Table 4
Correlation coefficient 𝜌 for the IPFM model in PAP signal.

Subject MAC-1 MAC-2 MAC-3 PRO-1 PRO-2 PRO-3

Pig-1 0.994 0.992 0.992 0.995 0.995 0.995
Pig-2 0.996 0.997 0.997 0.992 0.995 0.994
Pig-3 0.999 0.999 0.998 0.995 0.992 0.996
Pig-4 0.998 0.997 0.993 0.983 0.996 0.997

Table 5
Orrelation coefficient 𝜌 for the IPFM model in PVP signal.

Subject MAC-1 MAC-2 MAC-3 PRO-1 PRO-2 PRO-3

Pig-1 0.930 0.927 0.784 0.922 0.912 0.905
Pig-2 0.921 0.904 0.913 0.952 0.954 0.941
Pig-3 0.952 0.959 0.952 0.947 0.957 0.940
Pig-4 0.902 0.884 0.828 0.905 0.871 0.879

Fig. 5. The PAP signal 𝑦(𝑡) and corresponding synthesized signal �̂�(𝑡) from Pig-2 MAC-2
ith 𝜌 = 0.997.

Fig. 6. The PVP signal 𝑦(𝑡) and corresponding synthesized signal �̂�(𝑡) for Pig-2 MAC-2
with 𝜌 = 0.904.

blood pressure signal models to compare with, we tried to compare our
results with similar studies on other signals. In [39,40], a model was
proposed to reconstruct ECG signals from PPG signals. The reconstruc-
tion results are evaluated by using relative root mean-squared error
(rRMS) and Pearson’s correlation coefficient (𝜌). The value of 𝜌 is 0.823
7

Fig. 7. This diagram explains the training and testing procedures used in Section 5.3.
The testing results are reported in Table 6.

and 0.940 on the MIMIC-III dataset under two different segmentation
methods used in [40]. In comparison, our average 𝜌 on PAP and PVP
signals is 0.995 and 0.914, respectively. We did not use rRMS as a
performance metric because it is a biased estimator of performance.
Given the contextual nature of model fitting, it is not possible to have
a head-to-head comparison with other models. Given the correlation
results, our model works well enough when compared to similar models
for other signals.

5.3. MAC and PRO classification using logistic regression

In this subsection, the experimental and synthesized pressure signals
are used to classify whether a given pig was injected with Isoflurane
(different MAC stages), or both Isoflurane and Propofol (different PRO
stages). Both are vasodilators but Isoflurane is inhaled and Propofol is
injected into the veins. Distinguishing the impacts of these two different
vasodilators on the peripheral signals is important. All MAC stages
under Isoflurane are combined as a single class. Similarly, all PRO
stages under propofol are combined as a second class. The classification
is performed by using logistic regression in the frequency domain. For
a given pig and for each stage, the total data is split into 70%–30%
for training and testing, respectively. These training and testing time
domain signals are divided into overlapping 10 s segments or windows.
To make the training and testing procedure unbiased, each stage of
each pig is divided into equal numbers (70 windows from the training
segment and 30 windows from the testing segment) of overlapping time
domain windows. Each time domain segment of 10 s is converted to the
frequency domain by using the fast Fourier transform (FFT). Frequency
domain magnitudes between 0 and 10 Hz are used as the feature vector
for logistic regression. Since the window size is 10 s, the frequency
domain resolution is 0.1 Hz, thus there are 100 frequency domain
samples between 0 and 10 Hz. Finally, the windows are aggregated
based on the class. The total number of windows used for MAC and
PRO classes during training are 4 × 3 × 70 = 840 each. Similarly,
4 × 3 × 30 = 360 windows are used for each class during testing.
Two different classifiers are trained; one uses the experimental data
and another one is based on model-synthesized data. The testing is
done on experimental testing data for both cases. The whole procedure
of classification has been explained in Fig. 7. The classification results
are shown in Table 6. In the tables, the results obtained by using the
experimental data are shown in parenthesis, and those obtained by
using the model-synthesized data are shown outside of the parenthesis.

The classifier based on model-synthesized PAP signals has a better
overall accuracy (92.50%) compared to that trained with the exper-
imental data (90.56%), partly due to the fact the modeling process
removed some of the noise and artifacts in the experimental data. This
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Table 6
MAC and PRO classification results. (The results obtained by using the experimental
data are shown in parenthesis, and those obtained by using the model-synthesized data
are shown outside of the parenthesis.)

(a) MAC and PRO classification using PAP data.

– MAC estimated PRO estimated

MAC 93.33% (90.56%) 6.67% (9.44%)
PRO 8.33% (9.44%) 91.67% (90.56%)
Accuracy 92.50% (90.56%)

(b) MAC and PRO classification using PVP data.

– MAC estimated PRO estimated

MAC 85.56% (98.33%) 14.44% (1.67%)
PRO 14.72% (9.44%) 85.28% (90.56%)
Accuracy 85.42% (94.44%)

Fig. 8. Dicrotic notch in a PAP pulse 𝑝(𝑡) in Pig-2 MAC-2. This notch marks the end
f systole and the beginning of diastole.

roves the utility of the model-synthesized signal to retain the valuable
nformation embedded in the signal vital for class discrimination. On
he other hand, synthesized PVP signal results have less accuracy
85.42%) compared to the experimental PVP signal results (94.44%).
his can be understood from the 𝜌 results presented in Table 5. Here,
ive stages (three MAC and two PRO) have comparatively bad fitting
𝜌 < 0.89). PVP signals with short duration in time have low correlation
alues. This relatively bad fitting is probably the reason behind the
educed accuracy in the PVP signal with the model-synthesized data.

.4. Proposed signal model on CHARIS dataset

The proposed IPFM model is also applied to an open-source blood
ressure dataset, the CHARIS dataset [41]. This dataset is part of the
arger collection of biomedical signals in the PhysioNet database [42].
HARIS contains arterial blood pressure recordings from radial arteries
f 13 traumatic brain injury human subjects. The signals were sampled
t 50 samples/s. Each recording has 1 million samples (5.56 h of
ecording). The data contain collection anomalies such as abrupt signal
evel changes and signal discontinuities. In this paper, the IPFM model
s fitted to 15-min continuous snippets from each of the recordings,
nd the correlation coefficient (𝜌) is presented in Table 7. The 𝜌
alues are consistently above 0.95 for all 13 human subjects. Thus
he proposed model is effective in modeling both pig and human ABP
ignals. Only 15-min signals are used because the proposed IPFM-based
odel assumes the pulse shape to be stationary. For onset detection,

‘findpeaks()’’ function of Matlab has been used as described in 4.3 (see
ig. 9).
8

v

Table 7
Correlation coefficient 𝜌 for the IPFM model in CHARIS data with human subjects.

Subject 𝜌 Subject 𝜌 Subject 𝜌

1 0.959 6 0.989 11 0.978
2 0.960 7 0.992 12 0.974
3 0.988 8 0.990 13 0.989
4 0.964 9 0.988 – –
5 0.983 10 0.990 – –

Fig. 9. Comparison of arterial pressure signal 𝑦(𝑡) and corresponding model fit �̂�(𝑡)
rom subject 10 of the CHARIS dataset. This 15-min data fit has 𝜌 = 0.990.

. Significance of model parameters

This section discusses the significance of different model param-
ters under different physiological conditions both qualitatively and
uantitatively.

.1. Unit pulse shapes

For each pulse, the notch after the systolic peak is called the
icrotic notch (Fig. 8). This marks the ending of the systole where
he aortic valve closes and the beginning of diastole and ventricular
illing. With increasing MAC and PRO levels, the dicrotic notch in
(𝑡) becomes less prominent in the PAP signals (Fig. 10). A similar
henomenon is observed in peripheral arterial and peripheral venous
oppler waveforms [43] and in arterial signals [44]. The dicrotic notch

s visible or prominent when the resistance in the arteries and veins is
ominant. At a lower resistance, the dicrotic notch is absent and the
isual demarcation of systole and diastole is lost. Both Propofol and
soflurane are vasodilators. Increase in the anesthetic level results in
idening of blood vessel and lower vessel impedance. The variations

n pulse shape at different anesthesia levels provide the distinguishing
eatures that can be exploited by the classifier. The notch is less visually
rominent in PRO signals. It is interesting to note that in PVP signals
e do not see any consistent notch and there is no consistent visual
istinction in pulses (Fig. 11). This seems quite obvious because the
ffect of aortic valve closing does not directly impact the PVP signal.
here are other factors that contribute to the classification of these
ignals but pulse shape seems to be a dominant characteristic in PAP
ignals. It can also be said that under dehydration, the PAP signal shows
trong dicrotic notch. On the other hand, the dicrotic notch loses its

isual prominence with hydration.
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Fig. 10. Pulse shapes in PAP signals at the different anesthetic stages. The red pulses
are the aggregate averages of gray pulses and correspond to �̃�(𝑡) of the proposed model,
not 𝑝(𝑡).

Fig. 11. Pulse shapes in PVP signals at the different anesthetic stages. The red pulses
are the aggregate averages of gray pulses and correspond to �̃�(𝑡) of the proposed model,
not 𝑝(𝑡).

Fig. 12. Change in pulse duration (𝑇 ) of �̂�(𝑡) under different levels of Isoflurane and
Propofol based on PAP, and PVP signals.
9

6.2. Variation in pulse duration

The inverse of the pulse duration (𝑇 ) is the heart rate ( 1
𝑇 ). The

heart rates of various signals at different anesthesia levels are shown
in Fig. 12. The heart rate decreases with the increase of the MAC
levels. This is also similar to what happens during dehydration. Under
dehydration, the heart beats faster to maintain the cardiac output.
With the increase of MAC levels, the heart rate slows down, which is
similar to increased hydration. After introducing Propofol, the heart
rate initially increases at PRO-1 and PRO-2 but drops at PRO-3. This
trend is consistent in all pigs. A similar explanation is not valid for
PRO-1 stage, because the trend of heart rate is different here partly due
to the fact that before PRO-1 there were other two stages of Isoflurane
(2.00% and 1.50%) and the residual effect of these stages (see Table 2).
We presume that this is due to the dominant effects of the large doses of
vasodilators at this stage. It increases at PRO-2 and decreases at PRO-
3, this follows the pattern of heart rate decrease at MAC stages. Initial
heart rate increase (at MAC-1 and PRO-1) should be compensatory to
vasodilation to maintain cardiac output. The sharp final heart rate drop
at PRO-3 is most likely due to the fact that the heart loses its ability to
beat spontaneously for higher doses of anesthesia [45].

6.3. Correlation between respiratory and modulating signals

To understand the relationship between the respiratory signal 𝑟(𝑡)
and the modulating signal 𝑚(𝑡), a simple Pearson correlation coeffi-
cient has been calculated between 𝑚(𝑡) and 𝑟(𝑡) for each state that is
presented in Fig. 13. These correlation measures can work as indica-
tors of respiratory-induced heart rate variability or respiratory sinus
arrhythmia (RSA). A higher correlation between 𝑚(𝑡) and 𝑟(𝑡) signals
indicates that the HRV caused by 𝑚(𝑡) is passively influenced by 𝑟(𝑡).
Based on the results, it can be inferred qualitatively that the negative
correlation in the range −0.35 to −0.75 between 𝑚(𝑡) and 𝑟(𝑡) signal is
strong in PAP MAC signals and becomes weaker in PAP PRO signals.
This means that the HRV in PAP signal under MAC doses is influenced
by the respiratory rate. This is not the case during the PRO stages
because by this time the pigs lose their ability to breathe independently
and are supported by mechanical ventilation. On the other hand, the
correlation is almost nonexistent in PVP signals. Thus it is better to
use PAP signals to measure the strength and sources of HRV compared
to PVP signals. Based on the data from the four subjects, a stronger
correlation between 𝑟(𝑡) and 𝑚(𝑡) components of the PAP signal can
possibly be a good marker or indicator to distinguish MAC and PRO
stages. Both being vasodilators, MAC is showing a strong presence of
RSA whereas PRO does not.

7. Conclusion

In this paper, we have proposed a new integral pulse frequency
modulation-based model for peripheral arterial and venous pressure
signals. The model was developed by using arterial and venous pressure
data collected from in vivo porcine animal experiments with four
female pigs under different levels of anesthesia.

Under proposed model assumption, respiratory signal 𝑟(𝑡) is respon-
sible for RSA and modulating signal 𝑚(𝑡) is responsible for HRV. The
high frequency components of the PVP or PAP signal are both functions
of 𝑟(𝑡) and 𝑚(𝑡). The proposed model isolates these two signals. If the
RSA is the sole reason behind HRV then the correlation between 𝑚(𝑡)
and 𝑟(𝑡) should reflect that. To the best of our knowledge, this is the
first mathematical model that tries to isolate these two components in
the peripheral blood pressure signals.

During dehydration, the blood vessels constrict. On the other hand,
vasodilators like Isoflurane and Propofol used in this study broaden the
blood vessels. So, increasing doses of vasodilators have similar effect
of going from dehydration to hydration. Thus the results obtained in
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Fig. 13. Correlation coefficients of different states between 𝑚(𝑡) and 𝑟(𝑡) signals. Panels
a) and (b) are based on PAP and PVP signals respectively. The gray horizontal lines
n (a) represent 𝜌 = −0.35 and 𝜌 = −0.75 respectively. Similarly, in (b) the gray lines
epresent 𝜌 = 0.25 and 𝜌 = −0.25 respectively.

his study are applicable to dehydration-like scenario too. This is why
asodilators were used in this study.

The model captures the impacts of multiple physiological factors,
uch as the heartbeat pulse shape variation, heart rate variation, and
orrelation between 𝑚(𝑡) and 𝑟(𝑡). With model parameters estimated
rom the experimental data, it has been demonstrated that the model-
ynthesized data match very well with their experimental counterparts,
specially for PAP signals. The correlation coefficients of PAP signals
re consistently above 0.99 for almost all signals. The correlation
oefficient values drop to around 0.90 for PVP signals. Similar results
correlation coefficient > 0.95) have been obtained using the CHARIS
ataset of human arterial blood pressure signals. We strongly believe
his model can be extended to other similar biomedical signals like PPG,
erebral blood flow velocity, and Doppler waveforms related to cardiac
hysiology.

The model-synthesized data and experimental data were also used
o train a classifier to distinguish between two different types of anes-
hesia. The proposed model was able to retain meaningful features
nd achieved comparable classification results with experimental data.
he results indicate that both PAP signal and PVP signals can be used
o classify different anesthesia levels (and similarly can be used for
ehydration). This paper also suggests a possible way to distinguish
espiratory-induced heart rate variability from other causes.

For future work, the classification performance can be improved
y using information from multiple signals collected from peripheral
egions in a minimally invasive way, instead of just using one signal.
n addition, we would like to further improve the model by addressing
ome of its current limitations. Some limitations of the current model
nclude: (1) The pulse shape is assumed stationary across the entire
ignal duration. A more effective approach would be to divide the signal
nto segments and consider stationary pulse shapes in each smaller time
egment. (2) The assumption of 𝑒𝑢(𝑡) = −𝑒𝑙(𝑡) was used in the model
evelopment. This assumption is not always valid. A more general
pproach would be to assume 𝑒𝑢(𝑡) = 𝜙𝑒𝑙(𝑡), where 𝜙 ∈ R. A more
fficient upper and lower envelope detection algorithm can help to
urther improve the estimation accuracy of the modulating signal 𝑚(𝑡).
3) A better pulse onset detection method can be used for PVP signals.
4) Although time was allotted for inhalation concentration to fall to
ub-therapeutic levels when transitioning from Isoflurane to Propofol,
he experimental setup lacked the equipment to confirm the end-tidal
10

oncentration of Isoflurane was at or near zero. Residual inhalation
nesthesia (Isoflurane) could be contributing to initial Propofol mea-
urements. Ideally resourced, future work would examine intravenous
gents independently from the moment of induction.

All supplementary materials and codes of this paper can be found
t this Github repository: https://github.com/i2pt/MPAVPSwIPFM.
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ppendix A. Derivation of Eq. (8)

From (3), 𝜃(𝑡𝑘) = 𝑘𝑇 − 𝑡𝑘 and 𝜃′(𝑡𝑘) = 𝑚(𝑡𝑘). Using the properties of
elta function [46], if a function 𝑔(𝑡) has only one root at 𝑡 = 𝑡𝑘, then

[𝑔(𝑡)] = 1
|𝑔′(𝑡𝑘)|

𝛿(𝑡 − 𝑡𝑘) =
1

|𝑔′(𝑡)|
𝛿(𝑡 − 𝑡𝑘),

r

[𝑔(𝑡)] ⋅ |𝑔′(𝑡𝑘)| = 𝛿[𝑔(𝑡)] ⋅ |𝑔′(𝑡)| = 𝛿(𝑡 − 𝑡𝑘).

ssuming 𝑔(𝑡) = 𝑡 − 𝑘𝑇 + 𝜃(𝑡) yields 𝑔′(𝑡) = 1 + 𝑚(𝑡). Replacing 𝑔(𝑡) and
′(𝑡) in (7) gives

(𝑡) =
∑

𝑘
𝛿(𝑡 − 𝑡𝑘),

= |1 + 𝑚(𝑡)|
∑

𝑘
𝛿
[

𝑡 − 𝑘𝑇 + 𝜃(𝑡)
]

.

sing Fourier series
∞
∑

𝑘=−∞
𝛿(𝑡 − 𝑘𝑇 ) = 1

𝑇

∞
∑

𝑛=−∞
𝑒𝑗𝑛

2𝜋
𝑇 𝑡,

∞
∑

=−∞
𝛿
[

𝑡 − 𝑘𝑇 + 𝜃(𝑡)
]

= 1
𝑇

∞
∑

𝑛=−∞
𝑒𝑗𝑛

2𝜋
𝑇

[

𝑡+𝜃(𝑡)
]

https://github.com/i2pt/MPAVPSwIPFM
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a

Using the relation above,

𝑠(𝑡) =
|1 + 𝑚(𝑡)|

𝑇

∞
∑

𝑛=−∞
𝑒𝑗𝑛

2𝜋
𝑇

[

𝑡+𝜃(𝑡)
]

=
|1 + 𝑚(𝑡)|

𝑇

{

1 + 2
∞
∑

𝑛=1
cos

[

𝑛2𝜋
𝑇

(

𝑡 + 𝜃(𝑡)
)

]

}

=
1 + 𝑚(𝑡)

𝑇

{

1 + 2
∞
∑

𝑛=1
cos

[

𝑛2𝜋
𝑇

(

𝑡 + 𝜃(𝑡)
)

]

}

where the last equality follows from the fact that |1 + 𝑚(𝑡)| = 1+𝑚(𝑡) as
|𝑚(𝑡)| ≪ 1. This proof assumes 𝑘 ∈ Z. Whereas in the rest of the paper
ssumes 𝑘 ∈ Z+. The only reason to assume 𝑘 ∈ Z+ is for practical

numerical convenience without loss of generality.
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